AquaFish Innovation Lab Technical Meeting at Asian-Pacific Aquaculture Surabaya, Indonesia 27-28 April 2016

Proceedings

Assembled by Amanda Hyman Edited by Jenna Borberg 2017

AquaFish Innovation Lab Management Office Oregon State University Strand Agriculture Hall Corvallis, OR USA 97330

Program activities are funded in part by the United States Agency for International Development (USAID) under CA/LWA No. EPP-A-00-06-00012-00 and by participating US and Host Country institutions.

The mission of the AquaFish Innovation Lab is to enrich livelihoods and promote health by cultivating international multidisciplinary partnerships that advance science, research, education, and outreach in aquatic resources. Bringing together resources from Host Country institutions and US universities, the AquaFish Innovation Lab emphasizes sustainable solutions in aquaculture and fisheries for improving health, building wealth, conserving natural environments for future generations, and strengthening poorer countries' ability to self-govern.

Acknowledgements

The AquaFish Management Entity acknowledges the contributions of researchers and the support provided by participating US and Host Country institutions, including the associated collaborators involved in this work. The editors acknowledge the contributions of Ford Evans, Kat Goetting, Stephanie Ichien, and Briana Goodwin.

Disclaimers

The contents of this document do not necessarily represent an official position or policy of USAID. Mention of trade names or commercial products in this document does not constitute endorsement or recommendation for use on the part of USAID or the AquaFish Innovation Lab. The accuracy, reliability, and originality of work presented in this document are the responsibility of the individual authors.

This publication may be cited as:

AquaFish Innovation Lab. April 2017. AquaFish Technical Sessions at Asian-Pacific Aquaculture. AquaFish Innovation Lab, Oregon State University. Corvallis, Oregon, USA.

AquaFish Innovation Lab College of Agricultural Sciences Oregon State University Strand Agriculture Hall Corvallis, Oregon 97330-1643 USA

Table of Contents

REAMBLE	5
)16 AQUAFISH TECHNICAL MEETING AGENDA	6
BSTRACTS AND POWERPOINT PRESENTATIONS	
AquaFish Technical Session 1	
Innovations in Smallholder Aquaculture Technology: AquaFish Research on Tilapia	
Effect of pulsed feeding on growth, gut metagenome, and intestinal nutrient transporters tilapia in pond culture	
Evaluation of housefly <i>Musca domestica</i> maggot meal as protein source in Nile tilapia <i>Oreochromis niloticus</i> diets	
Efficacy of common carp Cyprinus carpio testis enducing sex reversal of Nile tilapia Oreochromis niloticus	
Assessment of value chain of farmed Nile tilapia <i>Oreochromis</i> niloticus in costal and la zones of Tanzania	ke
Performance evaluation of blended virgin coconut oil on growth, feed utilization, body composition, body fatty acids, plasma metabolites of Nile tilapia <i>Oreochromis</i> niloticus resistance to <i>Streptococcus iniae</i> challenge	and
Inclusion of Nile tilapia Oreochromis niloticus and Sahar Tor putitora improves reporductivity in carp-polyculture system	80
AquaFish Technical Session 2	
Innovations in Smallholder Aquaculture Technology: AquaFish Research on Sustain	
Systems	
Aquaculture carrying capacity of Stung Chinit Reservoir, Camboida: A pilot project	96
Growth and production of carp and SIS in periphyton enhanced systems	
Effects of reduced feeding strategies for combined polyculture of two major carps (Roh	
and Catla) with Shingh catfish Heteropneustes fossils	
Spawning response of sahar Tor putitora in Terai region of Nepal	141
Understanding sex change and hermaphroditism in African lungfish Protopterus	
aethiopicus and its implication to aquaculture: Preliminary findings	158
AquaFish Technical Session 3	
Innovations in Smallholder Aquaculture Technology: AquaFish Research on Snakeh	
Impacts of climate change on snakehead value chains in the Lower Mekong Basin of Cambodia and Vietnam	
Evaluating growth performance and immune responses of snakehead Channa striata by	
feeding plant protein diets supplemented with mannan oligosaccharide	
Assessment on the current status of snakehead seed production in the Mekong Delta,	198
Sustainable snakehead aquaculture development in the Lower Mekong Basin of Cambo	
· · ·	
A must Fink The short of Constraint A	
AquaFish Technical Session 4	21

Innovations in Smallholder Aquaculture Technology: AquaFish Economics and	
Marketing Research	219
Impact of stocking density and feeds on yield of Pangasius catfish <i>Pangasius</i>	
hypophthalmus in hyposaline waters	219
Price volatility in the African catfish reseller markets in Uganda	249
Implementing mobile marketing and technical support for fish farmers: Uganda grower	
experiences and aspirations	261
An assessment of household food security in fish farming communities in Ghana	275
Production and economic benefits of reduced feed inputs and addition of Indian carp (Roh	nu)
on Nile tilapia growout in ponds	288
AquaFish Technical Session 5	320
Innovations in Smallholder Aquaculture Technology: AquaFish Research in Capacity	
Building and Gender.	320
Improving the well-being of Bangladeshi women mud crab culturist using a value chain	
analysis	320
Establishing school ponds for educating students to improve health and nutrition of childr	en
and women in rural Nepal	342
Fish and nutrient consumption among women and pre-school children in rainy season in	
Cambodia	355
Role of the AquaFish Innovation Lab in university capacity building and aquaculture	
development in Nepal	371

PREAMBLE

2016 AquaFish Technical Meeting APA 2016 – Surabaya, Indonesia 27-28 April 2016

With a growing global population, food security is becoming increasingly important. More and more people will rely on fish from aquaculture, the fastest growing sector of animal protein production. Much of the global aquaculture occurs on a small to medium scale. Promoting smallholder aquaculture technologies is a focus of AquaFish Innovation Lab (AquaFish) because such technologies can promote the development of sustainable and innovative solutions local challenges in the aquaculture industry.

On 27-28 April 2016, researchers assembled in Surabaya, Indonesia for the AquaFish's five technical sessions, which were organized by AquaFish Innovation Lab's Director Dr. Hillary Egna and management team, at the 2016 Asian-Pacific Aquaculture Conference. These sessions created valuable opportunities for program partners and the research community to learn about AquaFish's research portfolio. Topics for the five sessions all pertained to innovations in smallholder aquaculture technologies, with focuses on tilapia, sustainable systems, snakehead, economics and marketing, and capacity building and gender. (The tilapia session was also part of the International Symposium on Tilapia in Aquaculture 11, held in Surabaya.)

2016 AQUAFISH TECHNICAL MEETING AGENDA APA 2016 – Surabaya, Indonesia

27-28 April 2016

Grand City Convention Center

Wednesday, 27 April 2016

AquaFish Technical Session 1 (11:00 – 14:10) Innovations in Smallholder Aquaculture Technology: AquaFish Research on Tilapia

Chair: Dr. Hillary Egna, AquaFish Director and Lead Principal Investigator Co-Chair: Dr. Ford Evans, AquaFish Associate Director

 11:20-11:40 Evaluation of housefly Musca domestica maggot meal as protein source tilapia Oreochromis niloticus diets Nazael A. Madalla*, Tausi Ally, & Sebastian W. Chenyambuga 11:40-12:00 Efficacy of common carp Cyprinus carpio testis enducing sex reversal tilapia Oreochromis niloticus Rahul Ranjan, Narayan P. Pandit*, Nabin B. Khanal, Madhav K. Shrestha S. Diana 	
11:40-12:00 Efficacy of common carp <i>Cyprinus carpio</i> testis enducing sex reversal tilapia <i>Oreochromis niloticus</i> Rahul Ranjan, Narayan P. Pandit*, Nabin B. Khanal, Madhav K. Shrestha S. Diana	e in Nile
tilapia <i>Oreochromis niloticus</i> Rahul Ranjan, Narayan P. Pandit*, Nabin B. Khanal, Madhav K. Shrestha S. Diana	
S. Diana	
	, and James
12:00-12:20 Assessment of value chain of farmed Nile tilapia Oreochromis niloticu. and lake zones of Tanzania Sebastian W. Chenyambuga [*] , Elibariki E. Msuya and Nazael A. Madalla	s in costal
12:20-13:30 Lunch	
13:30-13:50 Performance evaluation of blended virgin coconut oil on growth, feed body composition, body fatty acids, plasma metabolites of Nile tilapia <i>Oreochromis niloticus</i> and resistance to <i>Streptococcus iniae</i> challenge Liping Liu*, Andrews Apraku, Xiangjun Leng, Emmanuel J. Rupia, Chris Ayisi	
13:50-14:10 Inclusion of Nile tilapia <i>Oreochromis niloticus</i> and Sahar <i>Tor putitora</i> reproductivity in carp-polyculture system Mahendra Bhandari, Rama N. Mishra, Madhav K. Shrestha, and James S.	-

Thursday, 28 April 2016

AquaFish Technical Session 2 (8:30 – 10:10) Innovations in Smallholder Aquaculture Technology: AquaFish Research on Sustainable Systems Chair: Dr. Hillary Egna, AquaFish Director and Lead Principal Investigator Co-Chair: Jenna Borberg, AquaFish Assistant Director of Research

- 8:30-8:50 Aquaculture carrying capacity of Stung Chinit Reservoir, Cambodia: A pilot project David Bengtson, Phen Chheng, Puthearath Tith, Bunthang Touch, Nam So
 8:50-9:10 Growth and production of carp and SIS in periphyton enhanced systems Sabita Jha, Sunila Rai*, Madhav K Shrestha, and James S Diana
 9:10-9:30 Effects of reduced feeding strategies for combined polyculture of two major carps (Rohu and Catla) with Shingh catfish *Heteropneustes fossils* Shahroz Mahean Haque *, Imrul Kaiser, Moon Dutta, M. A. Wahab and Russell
- 9:30-9:50 Spawning response of sahar *Tor putitora* in Terai region of Nepal
- Subash K. Jha, Jay D. Bista*, Narayan P. Pandit, Madhav K. Shrestha, and James S. Diana
- 9:50-10:10 Understanding sex change and hermaphroditism in African lungfish *Protopterus aethiopicus* and its implication to aquaculture: Preliminary findings John Walakira, John Kiburara, Arkanjelo Idrifua, Joseph Molnar, Eugrance Ganda, Godfrey Kityo, Cassias Aruho

AquaFish Technical Session 3 (11:00 – 12:20) Innovations in Smallholder Aquaculture Technology: AquaFish Research on Snakehead

Chair: Dr. Hillary Egna, AquaFish Director and Lead Principal Investigator Co-Chair: Jenna Borberg, AquaFish Assistant Director of Research

- 11:00-11:20 Impacts of climate change on snakehead value chains in the Lower Mekong Basin of Cambodia and Vietnam Navy, H., Minh, T. H. and Pomeroy, R.S
- 11:20-11:40 Evaluating growth performance and immune responses of snakehead *Channa* striata by feeding plant protein diets supplemented with mannan oligosaccharide Thi Thanh Hien Tran, Pham Minh Duc*, Tran Minh Phu, Tran Le Cam Tu, Dang Thuy Mai Thy, and Bengtson David
- 11:40-12:00 Assessment on the current status of snakehead seed production in the Mekong Delta, Vietnam

Truong Hoang Minh, Tran Ngoc Hai and Robert Pomeroy

12:00-12:20 Sustainable snakehead aquaculture development in the Lower Mekong Basin of Cambodia

Phanna Nen, Nam So, Seang Hay Pheng, Robert Pomeroy

AquaFish Technical Session 4 (13:30 – 15:30)

Innovations in Smallholder Aquaculture Technology: AquaFish Economics and Marketing Research

Chair: Dr. Hillary Egna, AquaFish Director and Lead Principal Investigator Co-Chair: Kat Goetting, AquaFish Assistant Director of Outreach

- 13:30-13:50 Impact of stocking density and feeds on yield of Pangasius catfish *Pangasius hypophthalmus* in hyposaline waters M. Lokman Ali^{*}, S. Mahean Haque, M. A. Wahab and Russell Borski
- **13:50-14:10** Price volatility in the African catfish reseller markets in Uganda James O. Bukenya
- 14:10-14:30 Implementing mobile marketing and technical support for fish farmers: Uganda grower experiences and aspirations Joseph Molnar*. M. Matuha*, G. Atukunda, J. Walakira, J. Terhune, J. Bukenya, S. Naigaga
- 14:30-14:50 An assessment of household food security in fish farming communities in Ghana Kwamena Quagrainie* and Akua Akuffo
- 14:50-15:10 Production and economic benefits of reduced feed inputs and addition of Indian carp (Rohu) on Nile tilapia growout in ponds
 Mst. Kaniz Fatema*, Md. Abdul Wahab, S.A.S.A. Tahmid, Amit Pandit, S. M. Masud Rana, Shahroz Mahean Haque, and Russell J. Borski
- **15:10-15:30** Sustainable pearl farming in Africa using new spat collection techniques Narriman. S Jiddawi and Maria C. Haws

AquaFish Technical Session 5 (16:00 – 17:20)

Innovations in Smallholder Aquaculture Technology: AquaFish Research in Capacity Building and Gender

Chair: Dr. Hillary Egna, AquaFish Director and Lead Principal Investigator Co-Chair: Kat Goetting, AquaFish Assistant Director of Outreach

16:00-16:20	Improving the well-being of Bangladeshi women mud crab culturist using a
	value chain analysis Wilfred Jamandre*, Upton Hatch, Sattyananda Biswas, Emilia Quinitio, Md. Abdul Wahab, Sadika Haque, Russell Borski
16:20-16:40	Establishing school ponds for educating students to improve health and nutrition of children and women in rural Nepal Dilip K. Jha*, Narayan P. Pandit, Ishori S. Mahato, Madhav K. Shrestha, and James S. Diana
16:40-17:00	Fish and nutrient consumption among women and pre-school children in rainy season in Cambodia Touch Bunthang, So Nam, Chheng Phen, Pos Chhantana, En Net, and Robert Pomeroy
17:00-17:20	Role of the AquaFish Innovation Lab in university capacity building and aquaculture development in Nepal Madhav K. Shrestha and James S. Diana

ABSTRACTS AND POWERPOINT PRESENTATIONS

In the order they appear in the agenda

AquaFish Technical Session 1 Innovations in Smallholder Aquaculture Technology: AquaFish Research on Tilapia

Effect of pulsed feeding on growth, gut metagenome, and intestinal nutrient transporters of tilapia in pond culture

Russell J. Borski*, Scott Salger, David Baltzegar, Jimi Reza, and Md. Abdul Wahab Department of Biological Sciences, North Carolina State University, Raleigh, NC USA russell_borski@ncsu.edu

Global production of farmed Nile tilapia (Oreochromis niloticus) has increased exponentially over the past 30 years. Feed comprises 50-70% of production costs for tilapia. Here we assessed if reduced feeding might improve feed efficiency of tilapia grown in ponds in Bangladesh by utilizing pulsed feeding strategies along with weekly pond fertilization [fed daily (Tx1), fed alternate days (Tx2), fed every third day (Tx3), not fed (Tx4)] and without fertilization [fed daily (Tx5)]. Tx1, Tx2, and Tx5 had the greatest growth and survival, while Tx2 had the best feed efficiency and overall benefit:cost ratio of all groups. Metagenomic studies were designed to establish gut microbial diversity changes due to these pulsed feeding strategies. We obtained about 20 million total reads aligning to 225 16S (prokaryotic) operational taxonomic units (OTUs, e.g. different genus/species) and 288 18S (eukaryotic) OTUs. Metagenomic analyses indicated that Tx1 and Tx2 had the greatest diversity of bacteria and eukaryotes in the tilapia fecal material (Figure 1). The predominant bacteria found were Cetobacterium somerae (common gut colonizers of Nile tilapia), bacteria of family Peptostreptococcaceae, and *Clostridium perfringens*. 20 unique species were found in Tx2 including an antibiotic producing Actinoplanes sp., the methanol utilizing Methylobacterium hispanicum, and the biodegrative Sphingomonas sp. The

predominant eukaryotes in the tilapia fecal material were the diatoms of class Mediophyceae, phylum Rotifera, green algae of class Chlorophyceae, and the angiosperms of class Magnoliophyta. Gene expression of solute transporters found in the proximal intestine was investigated. Transporter gene expression in the Tx2 regime tended to be higher than feeding alone, but lower than the other feeding + fertilization and fertilization alone regimes.

This intermediate expression of transporters with alternate day feeding may reflect a

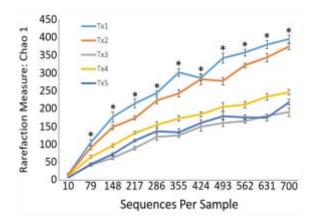
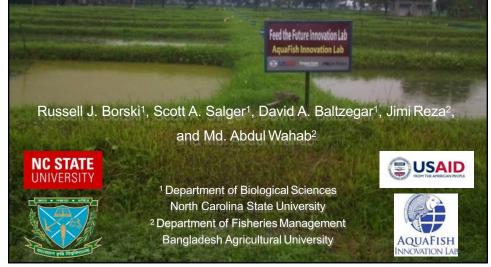



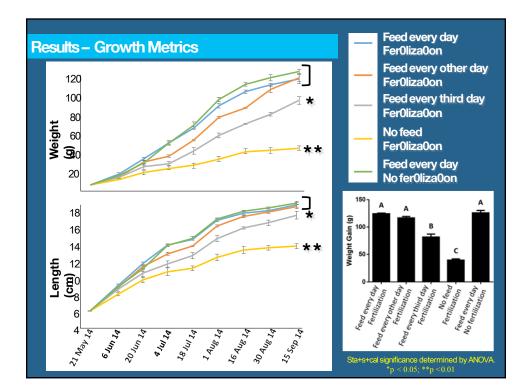
Figure 1. Chao 1 indices of tilapia gut prokaryotic microbial diversity. Diversity was higher in Tx1 and

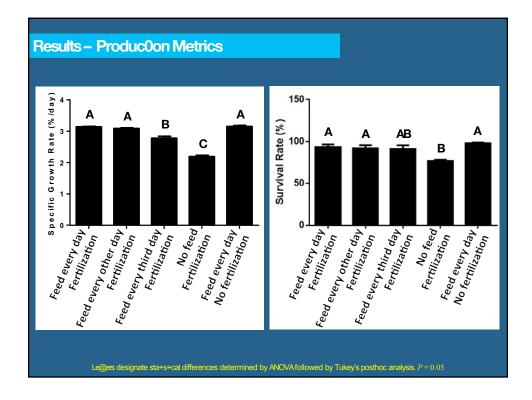
condition for most efficient uptake of nutrients from the GI tract of tilapia. Overall, the results indicate that feeding tilapia on alternate days in fertilized ponds can provide significant cost savings to Bangladesh tilapia farmers with little impact on fish growth, which supports previous studies in the Philippines. Additionally our results suggest that combined alternate-day feeding and fertilization increases the diversity of microbiota available to the fish and regulates nutrient uptake, which may contribute to the improved efficiency of tilapia growout.

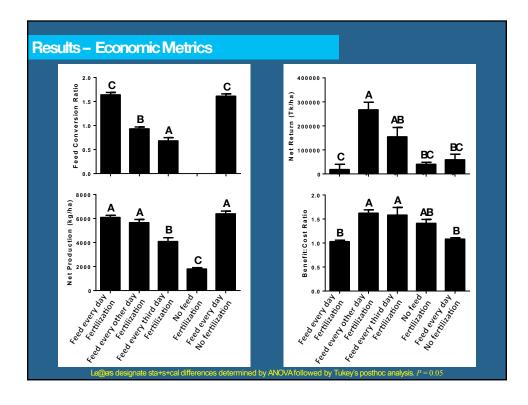
Effect of Pulsed Feeding on Growth, Gut Metagenome, and Intestinal Nutrient Transporters of Tilapia in Pond Culture

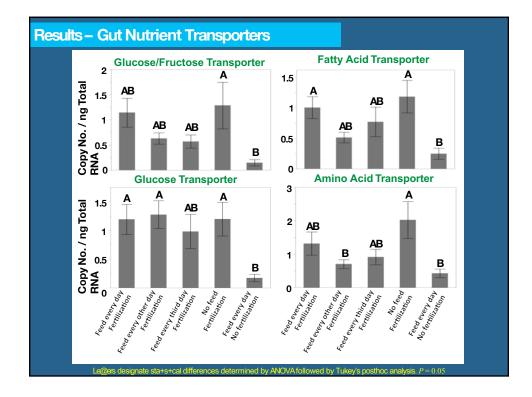
Background

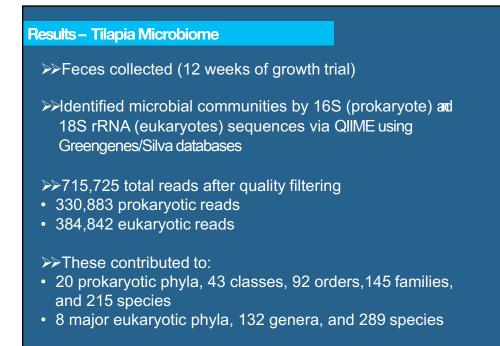
- Tilapia production > 5 million metric tons
- 50-70% of production costs for tilapia is attributable to feeds. Reducing costs through improved feed management strategies or formulations is important.
- Gut microbes are essential to efficient digestion of nutrients, energy homeostasis, innate immunity, maintenance and growth of epithelium
- Role of gut microbes in tilapia nutrient utilization, growth, and health poorly understood – the metagenome has yet to be evaluated in growout of tilapia.

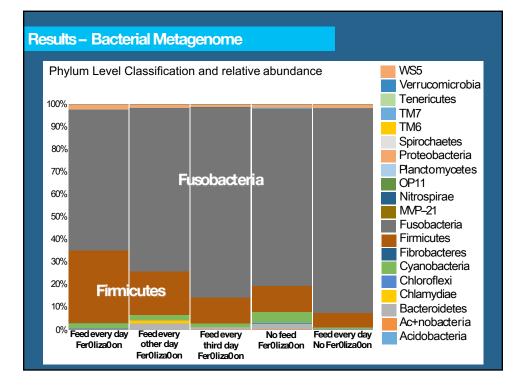

Objec0ves

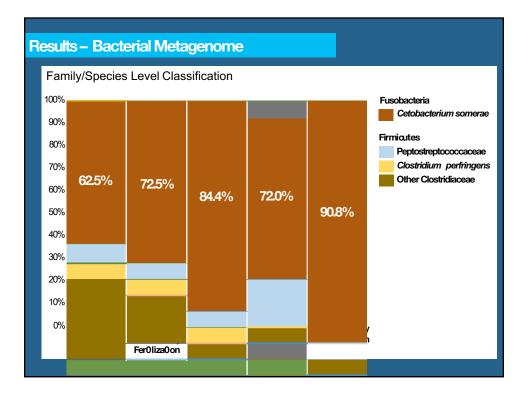


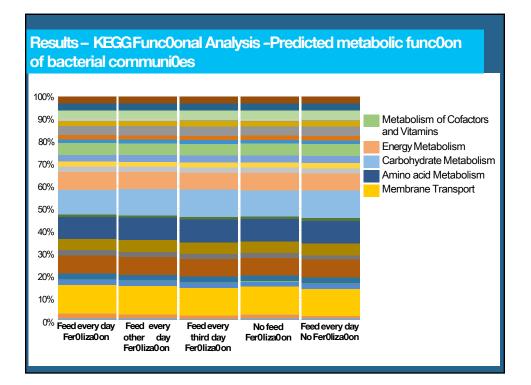


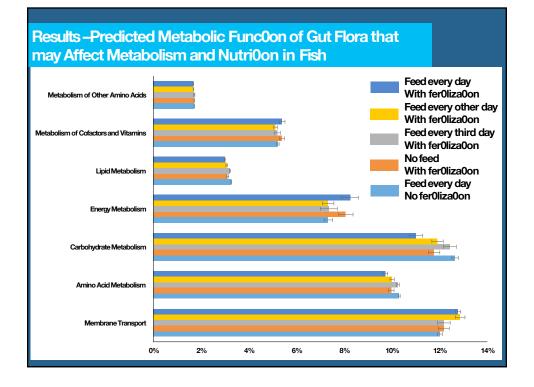

- Evaluate the effectiveness of pulsed feeding strategies (e.g. daily, alternate day, every 3rd day feeding) on Nile tilapia (*Oreochromis niloticus*) production
- Identify key molecular factors associated with nutrient uptake efficiency (nutrient transporter gene expression)
- Characterize changes in gut microbial communities in response to pulsed feeding strategies

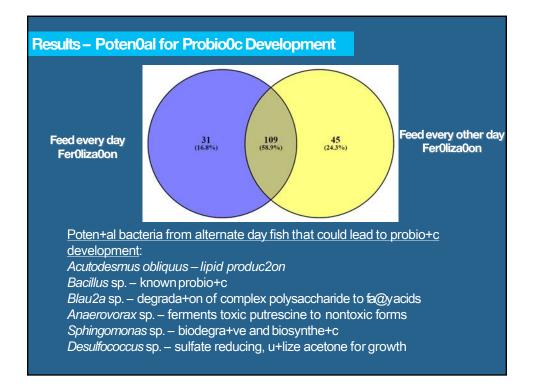

Study Desig	n				
Fisheries Laborato Agricultu • Gene Ex Metagen	Pond Study - s Field ry, Banglades ral University pression and omics Studies University	h			
Treatment/ Factors	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Treatment 5
Stocking Density	5 fish/m²	5 fish/m ²	5 fish/m²	5 fish/m ²	5 fish/m²
Feeding strategy	daily feeding	alternate day feeding	feeding every 3 rd day	no feeding	daily feeding
Pond Fertilization	4:1 (N:P), Weekly	4 : 1 (N:P), weekly	4 : 1 (N:P), Weekly	4 : 1 (N:P), Weekly	no fertilization

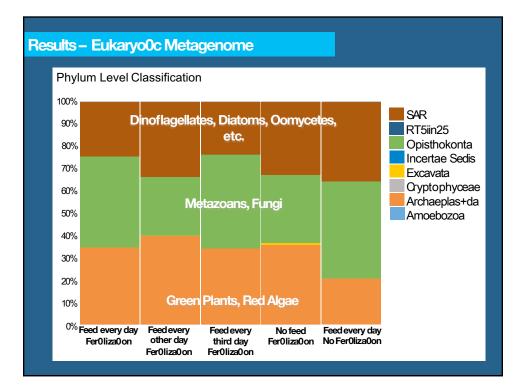


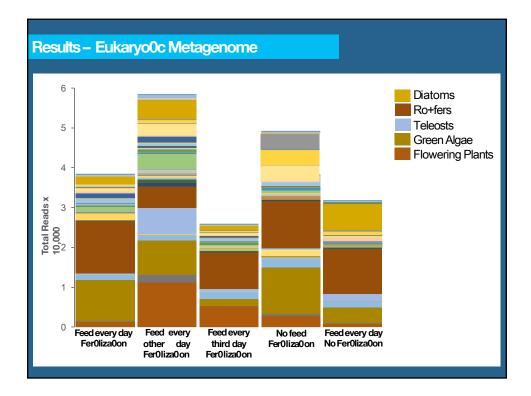


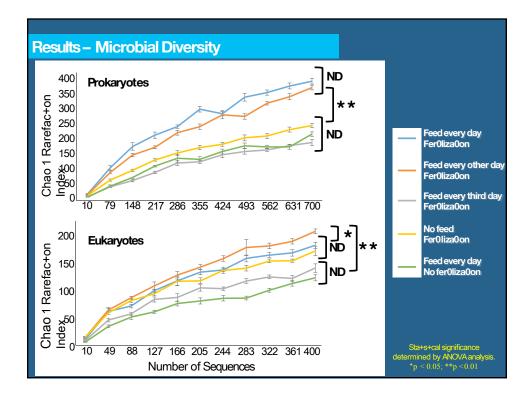




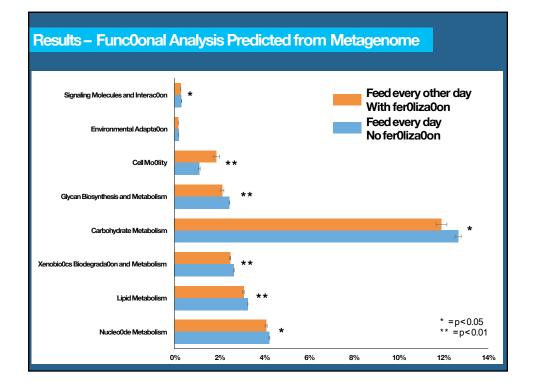


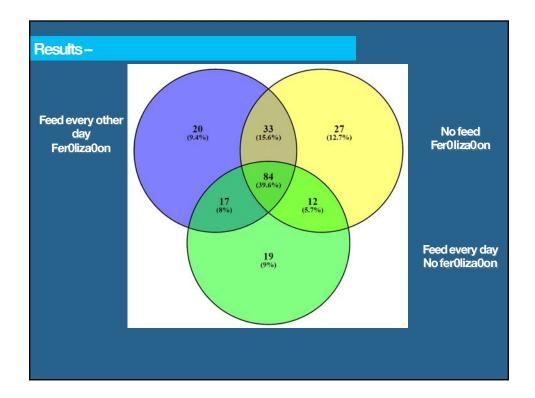


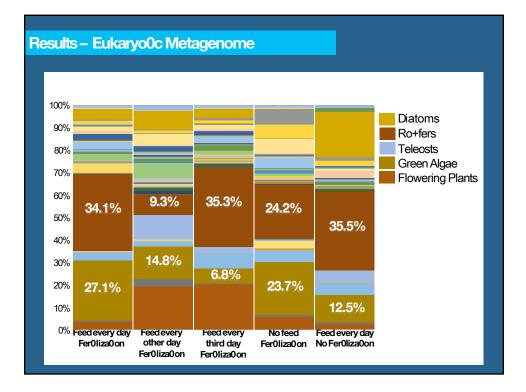




Conclusions


- No difference in growth or production parameters of Nile tilapia when employing alternate-day feeding vs. daily feeding strategies
 Feed costs decreased by 50%
- Nile tilapia may more efficiently utilize available nutrients when fed on alternate days
- A greater diversity of organisms found in the intestines of tilapia when fed on alternate days
 Potential for more diverse nutrients being available
 - Potential probiotic support for more efficient absorption of nutrients and general fish health





 \bigcirc

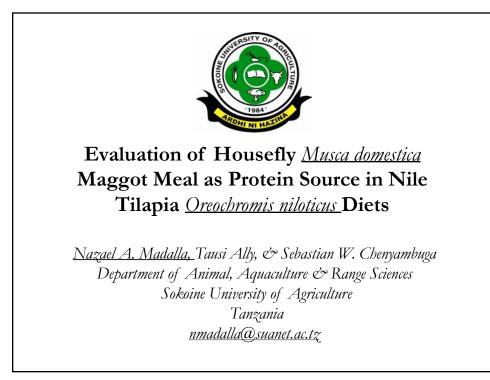
Background

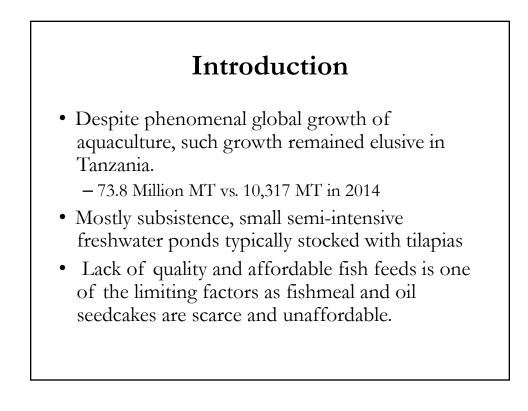
- Small-scale tilapia farmers in underdeveloped countries (e.g. Bangladesh) often use extensive culture practices, where fertilizer is added to stimulate pond primary production but no feeds are used (Belton et al 2011)
- Even modest amounts of feed (semi-intensive) can effectively quadruple production, promoting increases in personal household income and fish consumption, and greater food security for impoverished farmers (Belton et al 2011; Dey et al 2008)
- Reducing costs of feed, which comprises 50-70% of total production costs, is critical for enhancing incomes and sustainability

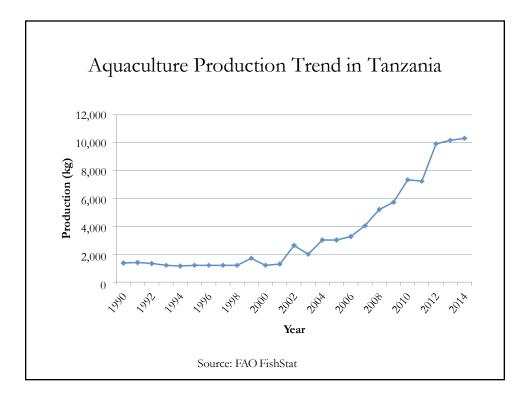
Evaluation of housefly *Musca domestica* maggot meal as protein source in Nile tilapia *Oreochromis niloticus* diets

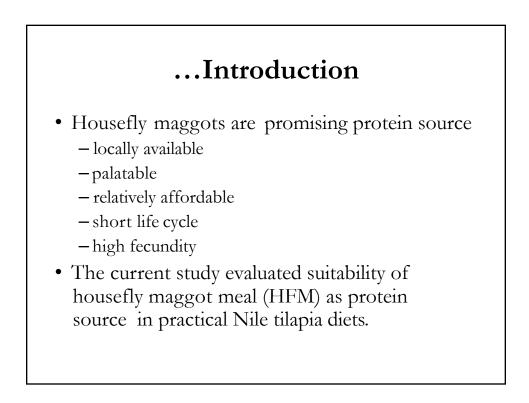
Nazael A. Madalla*, Tausi Ally, & Sebastian W. Chenyambuga Department of Animal Science & Production Sokoine University of Agriculture P. O. Box 3004, Morogoro, Tanzania. nmadalla@suanet.ac.tz

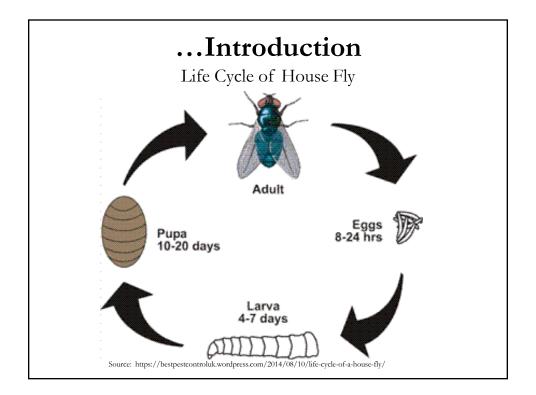
Despite phenomenal growth of aquaculture in the world, such growth has growth has remained elusive Tanzania. It has remained mostly rural taking place in small semi-intensive freshwater ponds mostly stocked with Nile tilapia. Lack of quality and affordable fish feeds is one of the limiting factors as fishmeal and oil seedcakes are scarce and unaffordable. Housefly maggots are locally available, palatable and relatively more affordable thus a potential protein source. Moreover, they have short life cycle and high fecundity rate within a short period time. The current study evaluated suitability of housefly maggot meal (HFM) as protein sources in the Nile tilapia diets. The maggots were produced using chicken manure as substrate. Four test diets were formulated to contain graded levels of HFM (25, 30, 35 & 40%) which were compared against a non-HFM control diet (HFM0) as shown in Table 1. All diets were isonitrogenous with 30% crude protein.

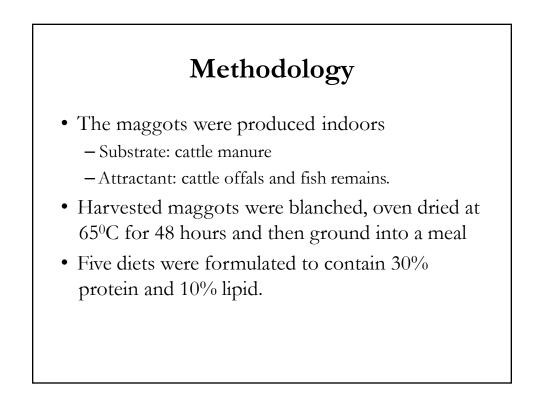

	Diets				
Ingredients	HFM0	HFM25	HFM30	HFM35	HFM40
Fish Meal	5	5	5	5	5
Housefly Maggot Meal	0	12	25	40	49
Cotton Seed Meal	50	39	25	9	0
Others	45	44	45	46	46

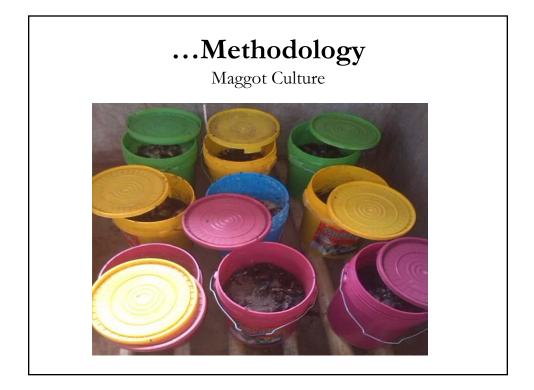

Table 1: Percentage inclusion levels of the ingredients in HFM Based Diets (g/100g diet)

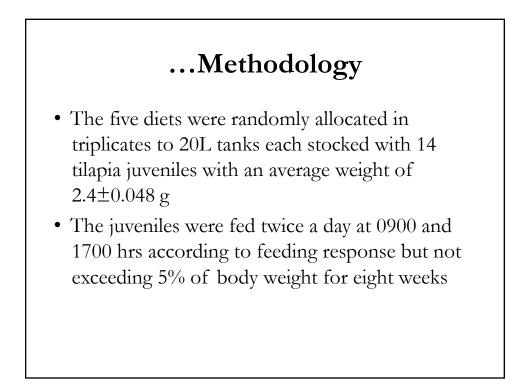

FM = Fish Meal, CSM = Cotton seed meal, Others include Maize meal, Wheat meal, Sunflower oil, Minerals/Vitamin premixes

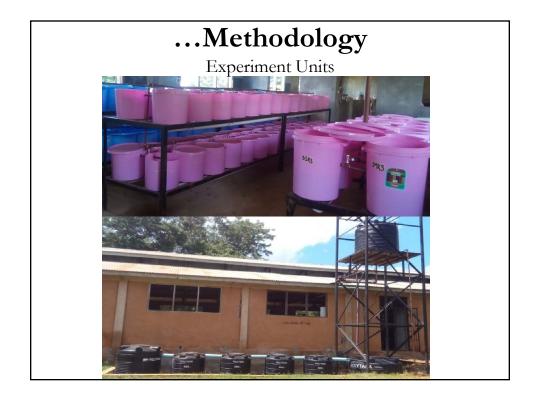

The diets were fed to juveniles with an average weight of 2.6g in a growth trial which lasted for eight weeks. Growth, feed utilization and cost effectiveness was best in fish fed diet HFM35 (Table 2). Therefore HFM can be included at 35% in Nile tilapia diets containing 5% fish meal and cotton seedcake or any similar plant protein without compromising biological and economical performance.


	Diets					
Parameter	HFM0	HFM25	HFM30	HFM35	HFM40	
Final Weight (g)	7.71ª	8.07 ^a	8.19 ^a	8.33 ^a	7.81 ^a	
Weight Gain (% day-1)	220a	243a	265a	267a	213a	
Feed Intake (gfish ⁻¹ day ⁻¹)	0.22 ^b	0.26 ^{ab}	0.30 ^{ab}	0.28 ^a	0.24 ^b	
Feed Conversion Ratio	2.47°	2.24 ^{abc}	2.05 ^b	1.85 ^a	2.66 ^{dc}	
Specific Growth Rate (% day ⁻¹)	2.00 ^a	2.11 ^a	2.18 ^b	2.16 ^a	1.88 ^b	
Protein Efficiency Ratio	1.35 ^b	1.49 ^b	1.64 ^{ad}	1.81 ^a	1.26 ^c	
Survival (%)	88.1 ^b	97.6 ^a	95.2ª	97.6 ^a	95.2ª	
Price of Feed (TZS/Kg)	1509	1374	1359	1329	1329	
Cost effectiveness (TZS/Kg of fish)	3727°	3077 ^b	2779 ^{ab}	2453 ^a	3534°	



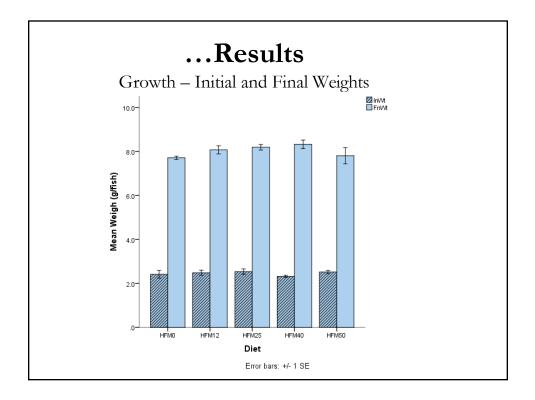


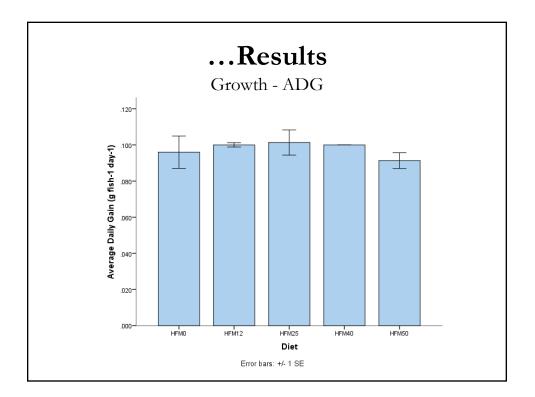


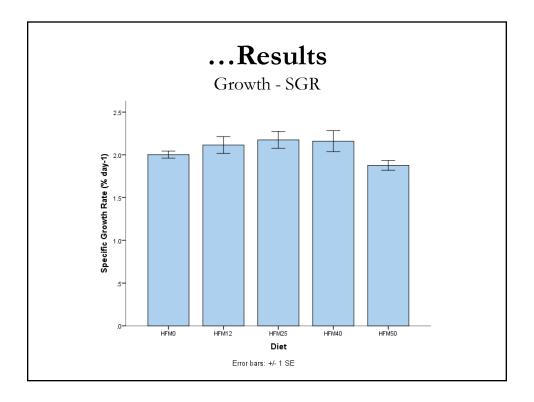


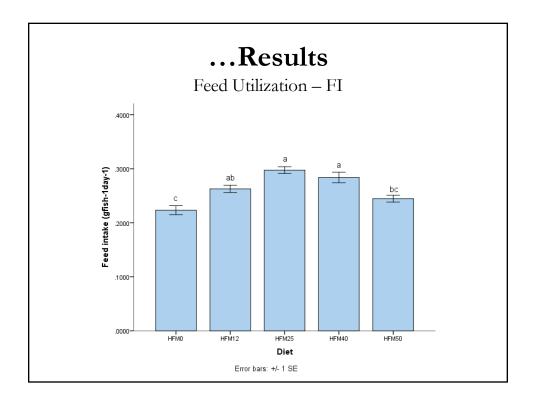
Formulation of HFM Diets (g/100g diet)							
	Diets						
Ingredients	HFM0	HFM12	HFM25	HFM40	HFM50		
Fish meal	5.0	5.0	5.0	5.0	5.0		
Housefly maggot meal	0.0	12.0	24.5	40.0	49.8		
Cottonseed meal	50.0	39.0	25.0	9.0	0.0		
Maize meal	40.0	38.5	40.5	42.0	42.2		
Wheat meal	2.0	2.0	2.0	2.0	2.0		
Sunflower oil	1.0	1.5	1.0	0.0	0.0		
Vitamin/mineral premix*	2.0	2.0	2.0	2.0	2.0		

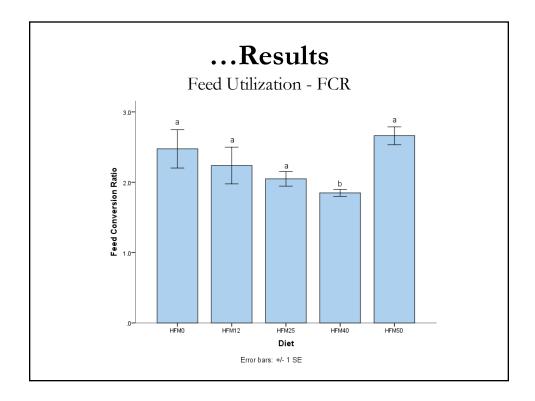
ng 5,750, Niacinamide mg 16, 500, Vitamin C 10, 000 mg, IRON 5,250 mg, MANGANESE 12, 760 mg, COPPER 13, 250 mg, ZINC 13, 250 mg, SODIUM CHLORIDE 48,

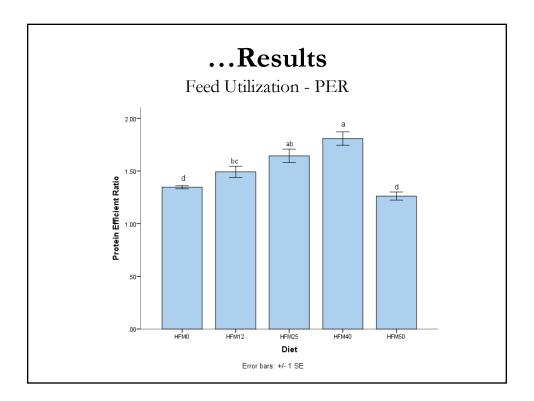


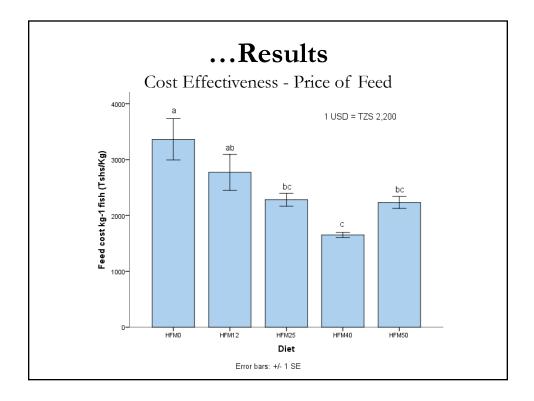


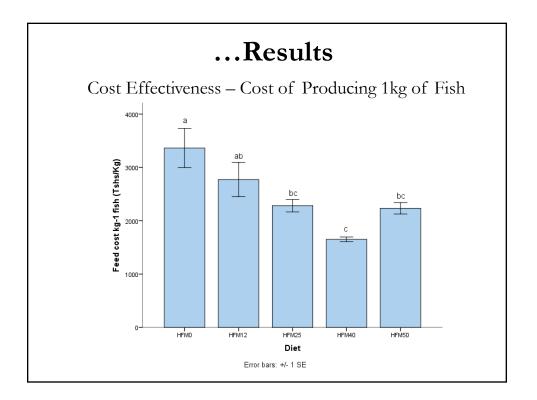

...Description of the end of the en


	Ingredients						
Items	HFM	FM	MM	WM	CSM		
Dry matter	97.52	98.96	88.01	96.9	97.50		
Crude Protein	48.55	69.20	10.5	11.74	41.60		
Ether Extract	19.07	10.28	3.60	1.80	8.5		
Crude Fibre	5.71	1.0	2.3	1.55	14.37		
Ash	11.13	22.76	1.30	1.91	6.70		





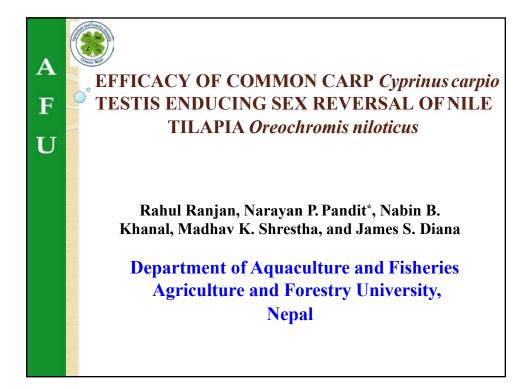


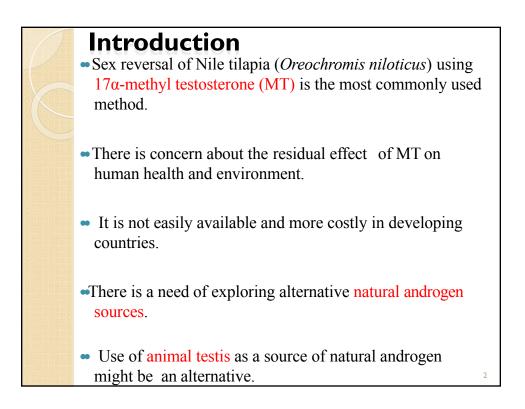


Conclusion

- Conclusion
 - HFM can be included at 40% in practical Nile tilapia diets without compromising biological and economical performance
- Further studies
 - -On-farm validation trials
 - Explore effect of different culture conditions on nutrient content of the HFM

Efficacy of common carp Cyprinus carpio testis enducing sex reversal of Nile tilapia Oreochromis niloticus

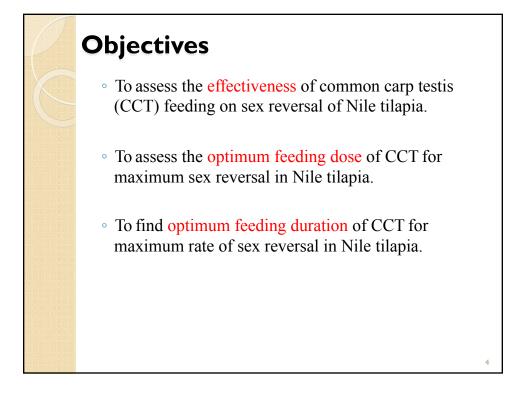

Rahul Ranjan, Narayan P. Pandit*, Nabin B. Khanal, Madhav K. Shrestha, and James S. Diana Department of Aquaculture and Fisheries Agriculture and Forestry University, Rampur, Chitwan, Nepal panditnp@gmail.com


Sex reversal of Nile tilapia (*Oreochromis niloticus*) using 17α-methyl testosterone is the most commonly used method. An experiment was carried out to explore the possibility of using common carp (*Cyprinus carpio*) testis as natural androgen source as an alternative for sex reversal of Nile tilapia fry. Six diets containing different proportions of dried common carp testis (CCT) were fed to sexually undifferentiated fry in aquaria for 25, 30 and 35 days. Feed types included 0% (Control), 50%, 65%, 80%, 95% and 100% dried CCT mixed with fish meal. After treatment, fish were transferred to nylon hapas suspended in an outdoor concrete tank and fed with normal diet until they reached 160 days of age.

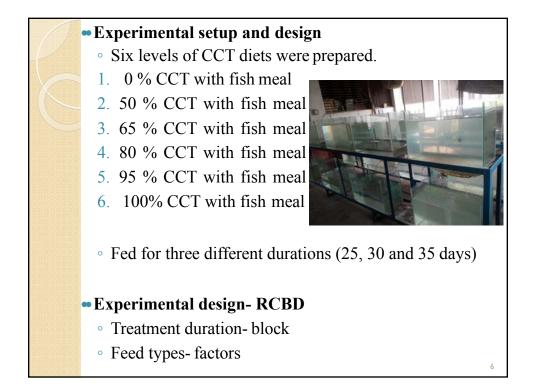
Feeding CCT to Nile tilapia fry during the critical period of sex differentiation increased the fraction of male fish in a dose-dependent manner (Table 1). The highest proportion of males was $95.8\pm4.2\%$ grown on the diet of 100% CCT for 30-35 days and lowest proportion was $62.5\pm7.2\%$ on the diet with 50% CCT fed for 25-30 days. There were significant differences in male proportion with different diets but the differences in male proportion over different times of exposure were not significant. This experiment clearly demonstrates that common carp testis can efficiently masculinize Nile tilapia fry when fed for at least 30 days after hatching. However, it suggests a need for further study on 100% CCT feed and duration of feeding.

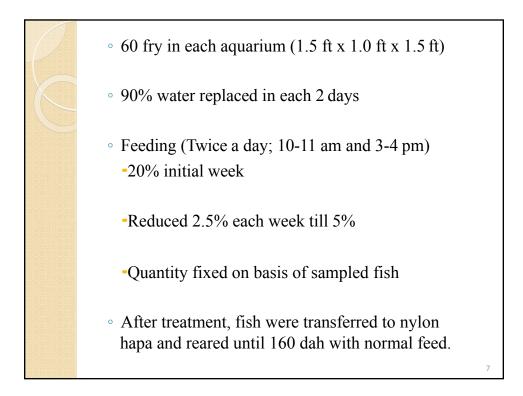
TABLE 1. Effect of CCT dosage and treatment duration on proportion of male of Nile tilapia (Mean \pm SE). Mean values with different superscript letters within column and within row are significantly different (p<0.05)

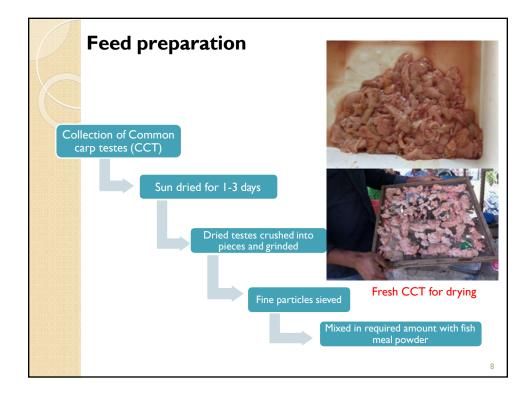
Feed type (CCT%) -	Trea	Mean		
Feed type (CC178)	25	30	35	Ivicali
0 (Control)	50.0±0.0	54.2±4.2	54.2±4.2	52.8±1.4°
50	62.5±7.2	62.5±7.2	75.4±4.0	66.8 ± 4.3^{b}
65	68.8±3.6	75.0±7.2	72.6±8.3	72.1 ± 1.8^{b}
80	62.5±7.2	69.6±10.9	79.2±4.2	70.4 ± 4.8^{b}
95	83.3±4.2	91.7±4.2	90.5±4.8	88.5 ± 2.6^{a}
100	87.5±0.0	95.8±4.2	95.8±4.2	93.1±2.8 ^a
Mean (Excluding Control)	72.9±5.3ª	78.9±6.4ª	82.7±4.5 ^a	

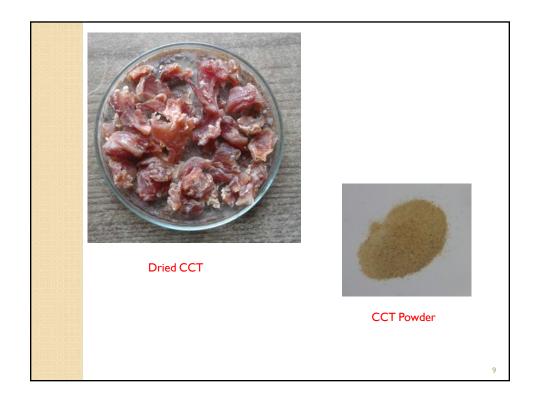

- Testis is a good source of androgen.
- Bull testis (Phelps et al., 1996), hog testis (Mayer et al., 2008), and ram testis (Haylor and Pascual, 1991)

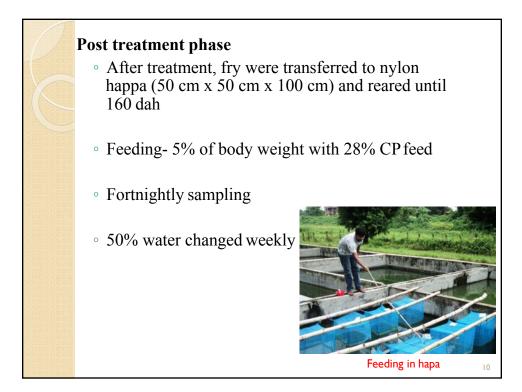
• Fish testis is more suitable for sex reversal in tilapia

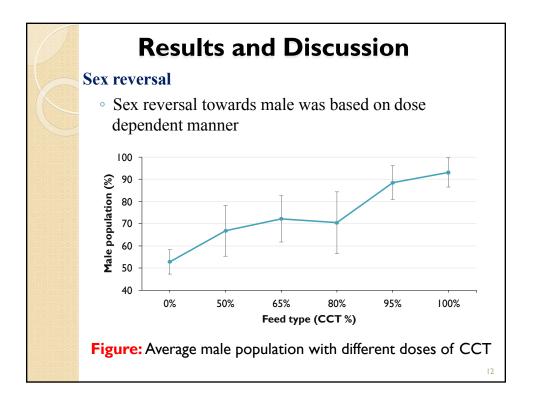

- Common carp (Cyprinus carpio)
 - Early maturation
 - Higher gonadosomatic index
 - Two seasons of maturity
 - Easily available
 - Less costly than synthetic hormone

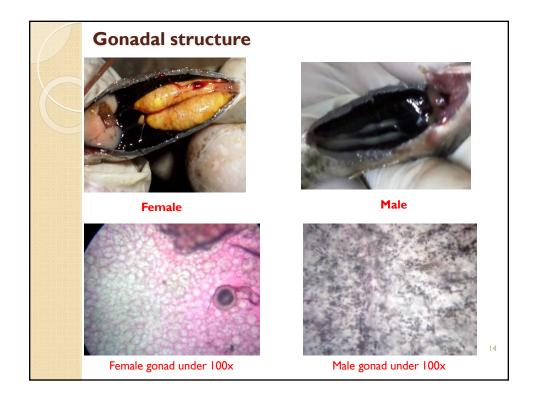


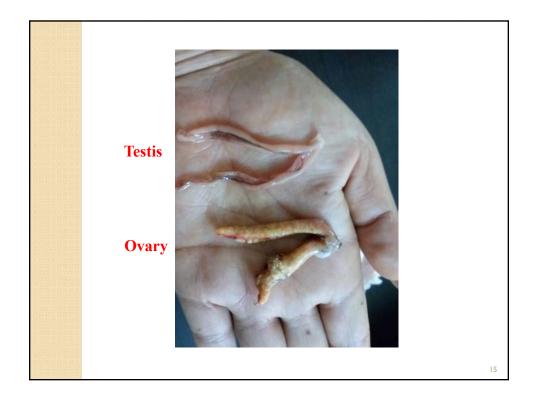

Common carp testis (CCT₃)











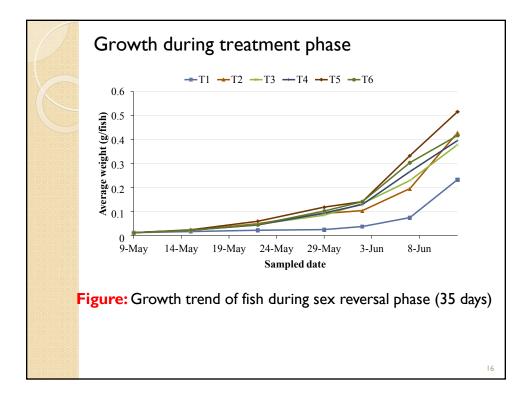
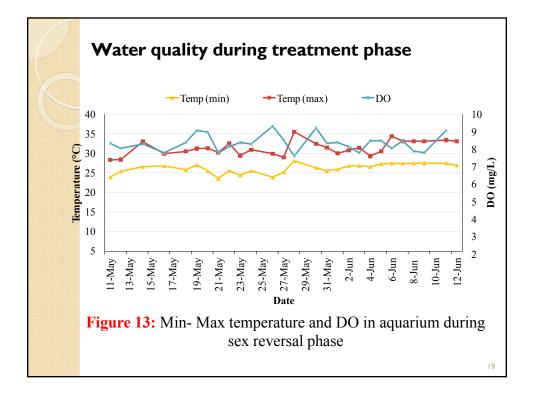
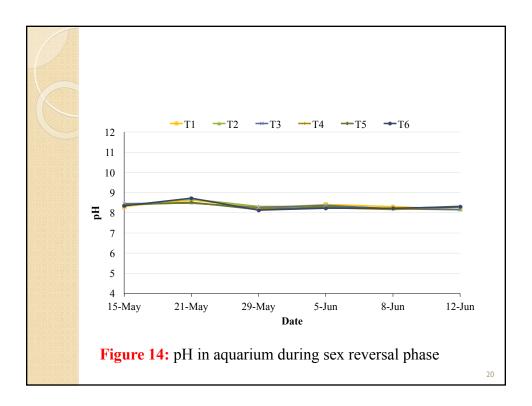
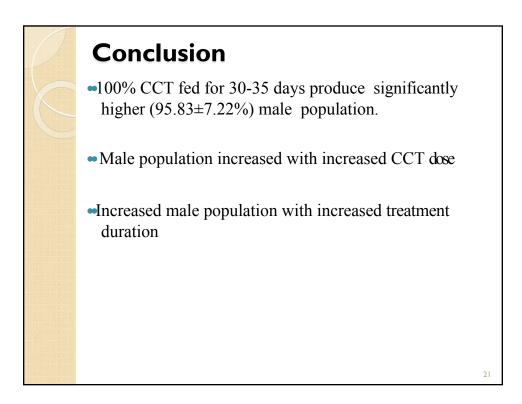
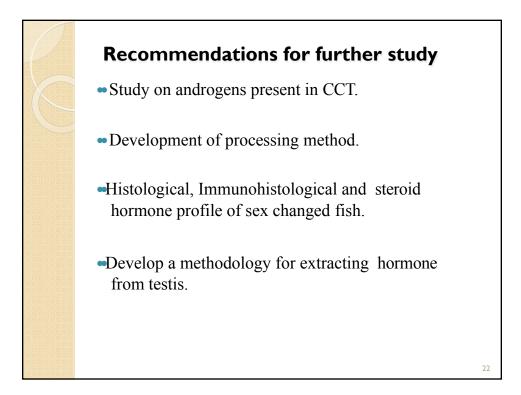


Table: Effect of CCT dosage and treatment duration on proportion of male of Nile tilapia (Mean±SE).									
Feed type (CCT	Feed type (CCT Treatment duration (days)								
%)	25	30	35	Mean					
0 (Control)	50.0±0.0	54.2±4.2	54.2±4.2	52.8±1.4°					
50	62.5±7.2	62.5±7.2	75.4±4.0	66.8±4.3 ^b					
65	68.8±3.6	75.0±7.2	72.6±8.3	72.1±1.8 ^b					
80	62.5±7.2	69.6±10.9	79.2±4.2	70.4±4.8 ^b					
95	83.3±4.2	91.7±4.2	90.5±4.8	88.5±2.6ª					
100	87.5±0.0	95.8±4.2	95.8±4.2	93.1±2.8ª					
Mean (Excluding									








P	Table 7: Growth parameters of fry during treatment phase after 35 days									
	Treatment		DWG (mg/							
	(CCT %)	Survival (%)	fish/day)	SGR (%/day)						
	0 (Control)	90.00±4.41ª	6.33±0.31°	8.55±0.14 ^c						
	50	60.00±14.81 ^b	11.93±0.78 ^{ab}	10.29±0.19 ^{ab}						
	65	57.78±10.18 ^b	10.50±0.60 ^b	9.94±0.16 ^b						
	80	62.78±13.47 ^b	10.98±1.55 ^ь	10.01±0.43 ^b						
	95	65.00±13.64 ^b	14.43±0.43ª	10.83 ± 0.08^{a}						
	100	61.67±7.64 ^b	11.57±1.14 ^{ab}	10.19±0.27 ^{ab}						
		100 61.67 ± 7.64^{b} 11.57 ± 1.14^{ab} 10.19 ± 0.27^{ab} Mean values with different superscript letters within column and within row are significantly different (p<0.05)								

Assessment of value chain of farmed Nile tilapia *Oreochromis* niloticus in costal and lake zones of Tanzania

Sebastian W. Chenyambuga^{*}, Elibariki E. Msuya and Nazael A. Madalla Department of Animal Science & Production, Sokoine University of Agriculture, P. O. Box 3004, Morogoro, Tanzania.


In Tanzania Fish farming is currently being promoted as an option for rural development as it provides an important opportunity for reducing poverty and protein malnutrition of the rural poor people. Furthermore, fish farming is emphasized as an alternative to capture fisheries due to decline of wild fish from natural water bodies. Pond culture of Nile tilapia (*Oreochromis niloticus*) is given first priority due to better characteristics of the Nile tilapia, which include fast growth, efficiency conversion of food, high fecundity, tolerance to a wide range of environmental conditions and good meat quality. Value chain analysis is a prerequisite for poverty alleviation as it contributes to overall improvement of the systems from production through to the final consumers. This study was conducted in four regions of Tanzania (Dar es Salaam, Coast, Mwanza and Geita) to assess the value chain of pond cultured Nile tilapia. The study aimed at determining and mapping actors and identifying constraints and opportunities of various actors in the value chain.

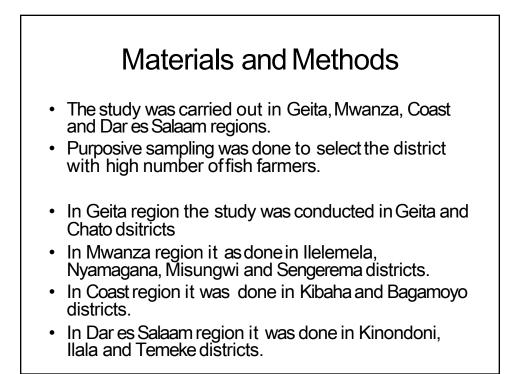
The study involved 113 fish farmers, 16 input suppliers, 74 fish marketers/retailers, 16 fish distributors/wholesalers and 41 restaurant owners/managers. The value chain actors for farmed Nile tilapia included input suppliers, fish farmers, fish traders and fish consumers. The input suppliers were private individuals (12.5%), farmers' groups (25%) and government institutions (62.5%) and supplied fingerlings, concentrate feeds, information and training on fish farming to farmers. The fish farmers owned 2.3 ± 0.3 ponds (mean \pm se) with average size of 598.3 ± 56.4 . All fish farmers cultured Nile tilapia and a few (23%) of them cultured African catfish. Average (\pm se) Nile tilapia yield was 4,928.4 \pm 427.4 kg/ha/year and 68.1% of the fish produced were sold, mainly to retailers (26.5%), neighbour consumers (21.2%) and distributors (17.7%). For most farmers (85.8%) price of fish was based on market price. However, the selling price was sometimes negotiable. The Fish traders included retailers, wholesalers, restaurant operators and food vendors. Fish retailers bought fresh fish, mainly Nile tilapia, not only from fish farmers but also from fishermen and they sold to distributors/wholesalers, restaurants, food vendors and consumers. Before selling the fish, they added value by washing, dressing, frying, smoking and sun drying. Wholesalers sold fish to other traders, consumers and restaurants. Restaurants sold cooked or fried fish to consumers. For all traders the price of fish was based on market price and cost plus pricing. Constraints for fish farmers included shortage of water for fish ponds, high costs of inputs, lack of proper knowledge on fish farming, shortage of fish feeds, low price of fish, slow growth of cultured fish and lack of reliable source of fingerlings. Problems encountered by fish traders included low capital, inadequate fish supply, lack of storage facilities and buying spoiled fish. Lack of contractual arrangement between input suppliers and fish farmers and fish farmers and fish traders was identified as the weakness among the various actors in the value chain. Opportunities for fish farmers included readily available markets for Nile tilapia in the villages and towns. For traders opportunities included high demand for Nile tilapia, availability of tenders in hotels and rising income for the majority of the people and increase of the middle class group in the country.

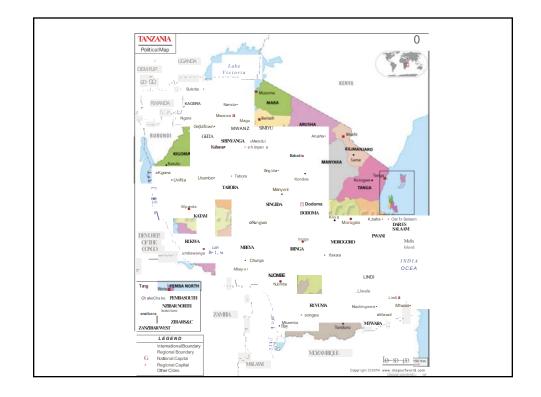
ASSESSMENT OF VALUE CHAIN OF FARMED NILE TILAPIA (*Oreochromis nilo-cus*) IN COASTALAND LAKE ZONES OF TANZANIA

<u>Sebas&an W. Chenyambuga</u>, Elibariki E. Msuya and Nazael A. Madalla

Sokoine University of Agriculture, Morogoro, Tanzania.

Introduc>on

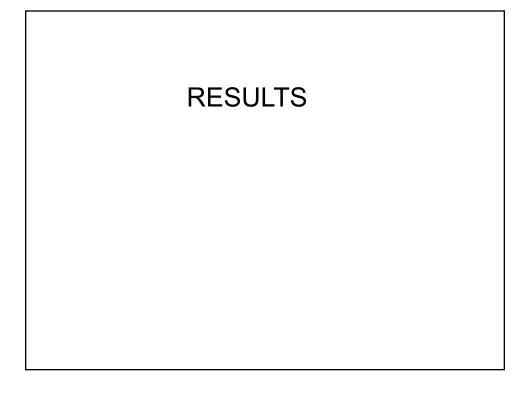

- In Tanzania Fish farming is being promoted as a means for reducing poverty and protein malnutri>on of the rural poor people.
- Fish farming is emphasized as an alterna>ve to capture fisheries due to decline of wild fish from natural water bodies.
- Fish produc>on from aquaculture is es>mated to be 2,676.7 metric tones, Nile >lapia (Oreochromis nilo-cus) accounts for 79.6% (MLFD, 2014)


- Nile >lapia (Oreochromis nilo-cus) is a good fish for resource poor farmers because it is easy to raise, fast growing and tasty, able to eat many types of foods, highly tolerant to diseases, able to reproduce easily under cap>vity and can tolerate poor water quality condi>ons.
 The demand for >lapia both for domes>c
 - The demand for >lapla both for domes>c consump>on and exports is high and increasing, but produc>on from natural water bodies has shown a declining pa\ern due to overfishing.

- Tilapia produc>on from aquaculture is low and s>ll at subsistence level.
- There is a need to increase the produc>vity of cultured Nile >lapia to meet the demands of the growing human popula>on and foreign markets.
- Value chain analysis provides informa>on needed for developing interven>ons, designing appropriate development programmes and policies to improve produc>vity and support market par>cipa>on of small-scale farmers.
- Value chain analysis involves mapping the actors par>cipa>ng in the produc>on, characteris>cs of actors, profits and costs structures, flow of goods throughout the chain, the des>na>on and volumes of domes>c and foreign sales, the distribu>on of benefits to actors in the chain and the role of upgrading and governance within the chain.
 In Tanzania Ii\le is known about the value chain of cultured Nile Tilapia, this makes the government to put Ii\le effort to promote fish farming for poverty allevia>on.

Objec>ve

- This study aimed at determining
- -the roles of various actors in the valuechain of Nile >lapia,
- -the distribu>on of benefits among the actors in the chain,
- value addi>on along the chain,
- the role of the governance in the chain and
- Iden>fying constraints and opportuni>es for improvement along the chain.



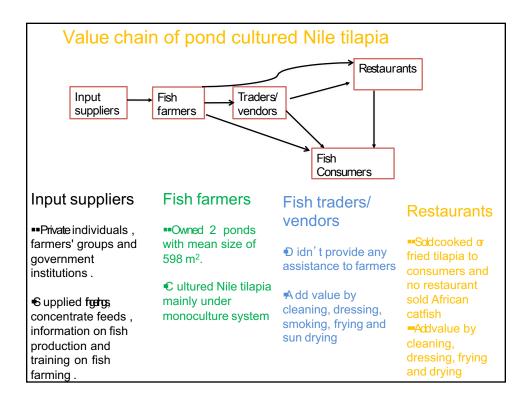
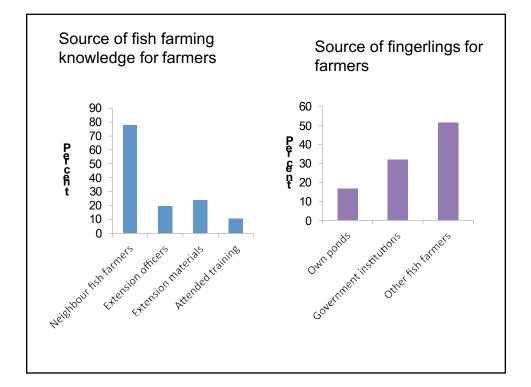
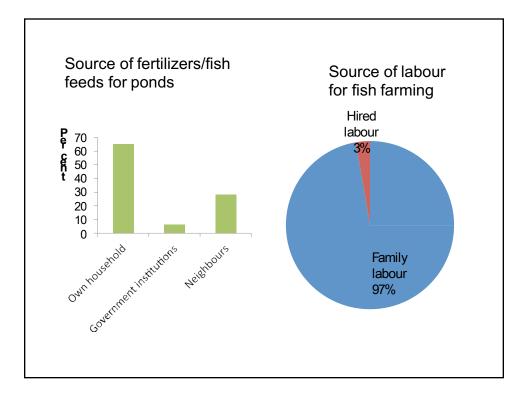


Table 1: Number of respondents for each category of value chain actors						
Category	Geita	Mwanza	Coast	DSM	Total	
Fish farmers	32	28	30	23	113	
Input supplier s	2	4	6	4	16	
Traders	30	-	24	20	74	
Distributors	-	6	4	6	16	
Restaurants	14	7	10	10	16	


- During the survey structured ques>onnaires were administered to individual fish farmers, input suppliers, traders and distributors/wholesalers.
- For fish farmers informa>on was collected on households' socio-economic characteris>cs, number and size of ponds, fish species cultured, fish produc>on yield, inputs sources and costs, propor>on of harvested fish consumed at home and sold to consumers/markets, income obtained from fish, marke>ng of fish, main customers, produc>on constraints and opportuni>es.


- For input suppliers informa>on was collected on type of organiza>on, type of input supplied, price determina>on and mode of payment and problems faced.
- For fish traders, wholesalers and restaurant operators informa>on was collected on households' socio-economic characteris>cs, type of business, fish species sold, source of fish, value addi>on ac>vi>es done, customers, price determina>on and mode of payment, main compe>tors, services received, problems faced and available opportuni>es.

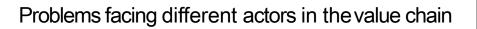
Variable		Small -scale farmers	Small -scale traders	Restaura nt owners
Sex	Male (%)	90.3	89.2	63.4
	Female (%)	9.7	10.8	36.8
Age (years)		40.7		35.4
Marital status	Single (%)	7.1	40.5	26.8
	Married (%)	92.0	56.8	70.7
	Divorced/ widow (%)	0.9	2.7	2.4
Educa>on level	Informal (%)	8.0	2.7	14.6
	Primary (%)	62.8	73.0	34.1
	Secondary (%)	24.8	24.3	48.8
	University (%)	4.4	0	2.4
Species cultured/ sold	Tilapia (%)	100	100	100
	Cahish (%)	23.0	-	-

Table 3: Yield and marketing of Nile tilapia produced by fish farmers

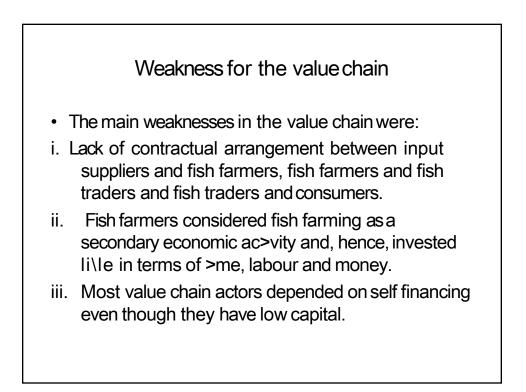
Variable		Region						
	Geita	Mwanza	Coast	DSM	Overall			
Fish yield (mean \pm se)	4,706.5	5,006.3	4,088.8	5,750.0	4,928.4			
kg/ha/year)								
Proportion of fish	37.0	36.6	27.9	24.6	32.0			
consumed at home (%)								
Proportion of fish sold	63.0	63.4	72.1	75.4	68.0			
(%)								
Place where farmers								
sold fish								
Farm gate (%)	53.1	57.1	73.3	82.6	65.5			
Market (%)	12.5	17.9	0.0	0.0	8.0			
Customer delivery (%)	34.4	25.0	26.7	17.4	26.5			

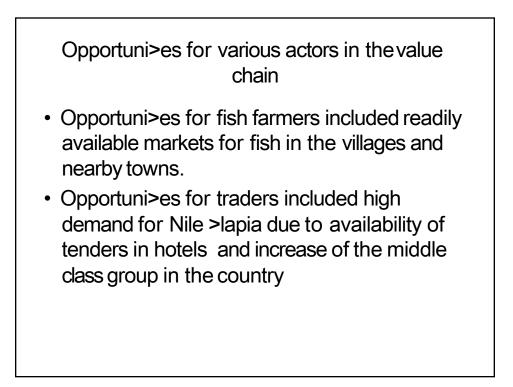


Table 4: Customers for fish cultured by small-scale famers


Variable			Region	n	
	Geita	Mwanza	Coast	DSM	Overall
Proportion of	42.3	52.0	63.4	48.0	51.8
fish sold to					
neighbour					
consumers (%)					
Proportion of	51.9	46.8	21.2	23.8	34.5
fish sold to					
traders/					
vendors (%)					
Proportion of	5.8	1.2	15.3	28.2	13.8
fish sold to					
restaurants (%)					

ble 5: Suppliers and customers of fish sold traders and restaurants						
		Traders	Restaurants			
Suppliers of >lapia	Fish farmers	18.9	12.5			
	Fishermen	81.1	-			
	Fish traders	-	77.5			
	Shop	-	10.0			
Customers						
	Consumers	86.5	100			
	Restaurants	70.3	-			
Contractual arrangement s						
	Yes	13.5	17.9			
	No	86.5	82.1			

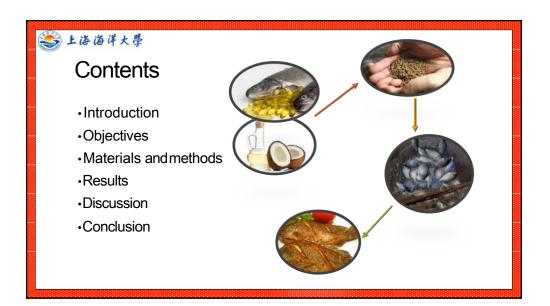

٦

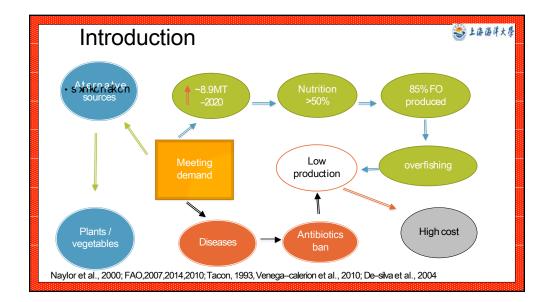

Table 6: Payment method and price determination mechanism

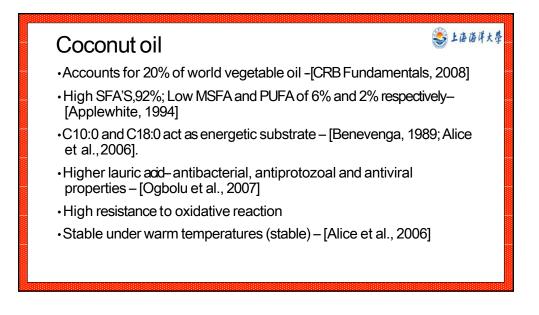
		Farmers	Traders	Restaurants
Paymen t method	Cash	100	100	100
Pricing syste m				
	Marke t price	85.4	81.1	65.9
	Costplus	42.2	51.4	65.9
	Mark up	6.2	0	17.1
	Targete d return	2.1	13.5	2.4
	Profit max.	0	0	12.2
	Break even analysis	0	0	0

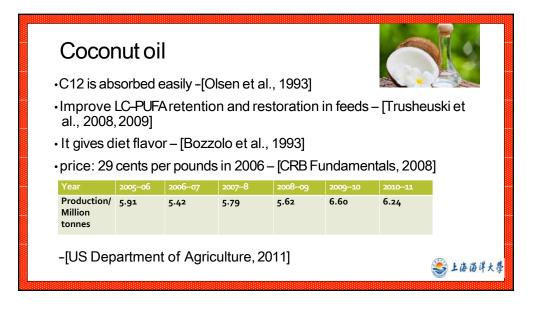
- The main constraints affec>ng fish farming were shortage of water supply to fish ponds, high cost of inputs, lack of proper knowledge on fish farming, lack of good quality fish feeds, low price of fish, slow growth of the cultured species and thej of fish.
- The problems which affected fish traders were lack of appropriate infrastructure for fish handling and storage, low capital and inadequate supply of fish.
- The constraints for restaurants included fish scarcity, low capital and unfaithful suppliers who supply spoiled fish.

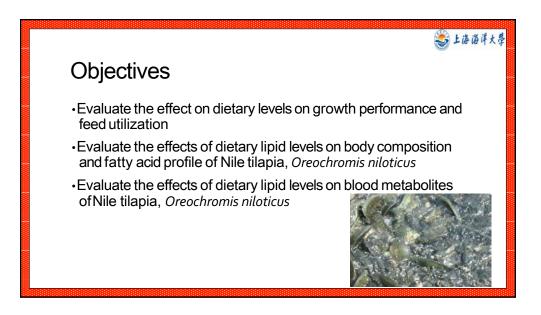
Performance evaluation of blended virgin coconut oil on growth, feed utilization, body composition, body fatty acids, plasma metabolites of Nile tilapia *Oreochromis* niloticus and resistance to *Streptococcus iniae* challenge

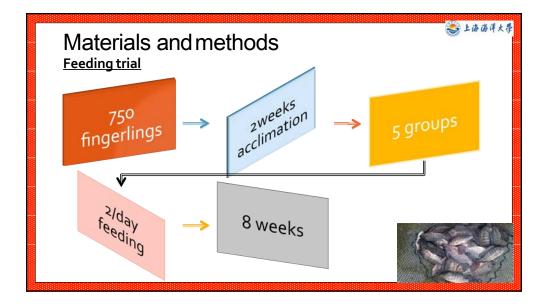

Liping Liu*, Andrews Apraku, Xiangjun Leng, Emmanuel J. Rupia, Christian Larbi Ayisi College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China E-mail: lp-liu@shou.edu.cn

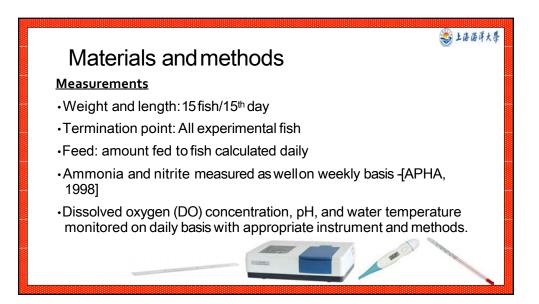

The use of alternative lipids as a means to spare protein activity in Nile tilapia (*O. niloticus*) feeds is becoming increasingly expensive due to the inadequacy and overexploitation and rising cost of fish oil (FO). However, the effect of coconut oil (CO) as alternative to FO on growth performance, feed utilization efficiency, plasma metabolites, and lipids in *O. niloticus* remain poorly understood.

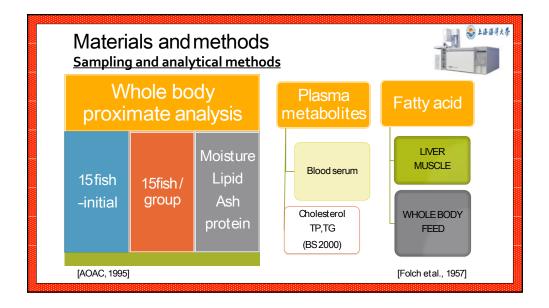

In the present study, five isolipidic experimental diets (32% crude protein) were formulated to contain fish oil (A) and virgin coconut oil (E) as sole lipids or blends of FO+VCO in ratio of 75:25% (B), 50:50% (C) and 25:75% (D) respectively. Triplicate groups of fish were fed one of five diets to apparent satiation, twice daily for 8 weeks. No significant differences (P<0.05) were observed in growth performance, protein efficiency ratio and weight gain. However, it was observed that, fish fed diet C (FO 50:50 VCO) exhibited the best performance among all parameters measured, while feed intake and final weight was the highest in fish fed diet E. No significance (P \ge 0.05) was observed among biochemical parameters. Significant effects of dietary fatty acid profile reflected in those fed the diets in whole body, muscle and liver C12:0 and C14:0. However, eiccosapentaenoic (EPA, 20:5n-3) and docosahexaenoic (DHA, 22:6n-3) were significantly different (P \ge 0.05) compared to their respective diets while liver n-3:n-6 ratio significantly increased and recording low levels in whole body and muscle. Plasma metabolites indicators and bacteria challenge among treatments were not altered by the inclusion of the alternative lipid. These results suggest that the inclusion of elevated levels of VCO in diets enhance growth and are viable for feeding *O. niloticus*.

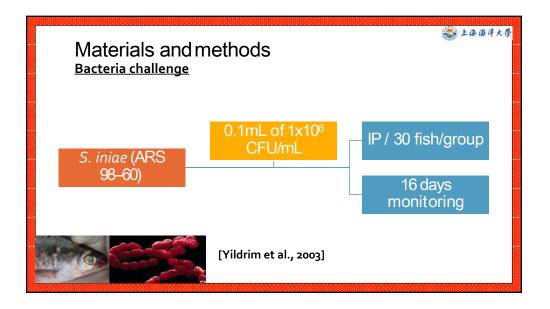


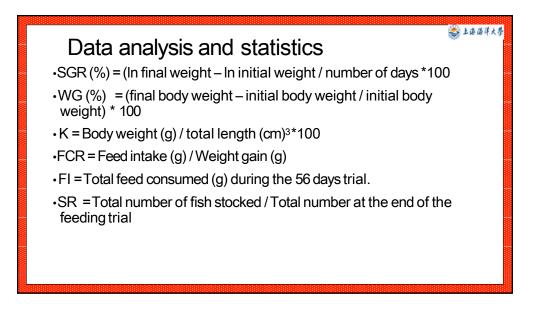

Speaker: Liping Liu

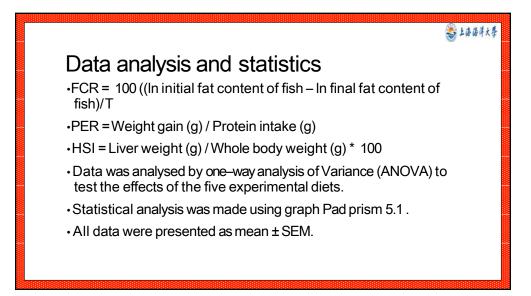


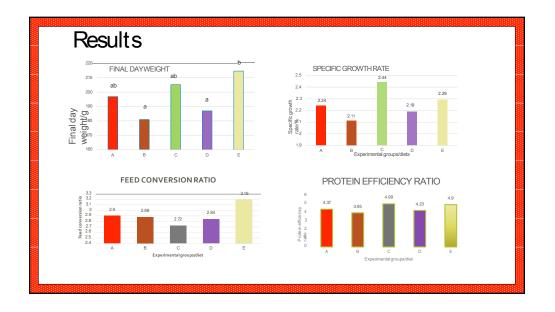


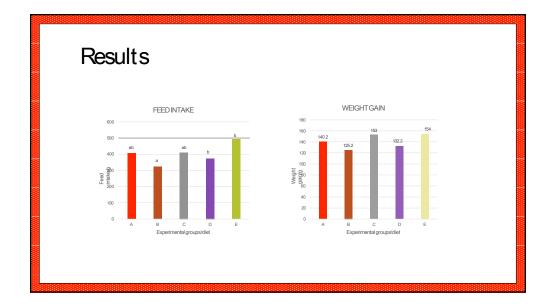




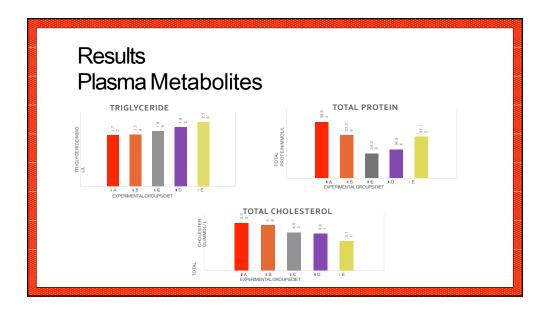

Materials and					
able 1: Proximate composition of ingre	edients (%DM) in experi	mental diets with d	lifferent added lip	id sources.	
ish meal	10.00	10.00	10.00	10.00	10.00
oybean meal	20.00	20.00	20.00	20.00	20.00
Vheat bran	20.00	20.00	20.00	20.00	20.00
Rape seed meal	24.26	24.26	24.26	24.26	24.26
Vheat Middling	20.00	20.00	20.00	20.00	20.00
Fishoil (FO)	3.00	2.25	1.50	0.75	0.00
/irgin coconut oil (VCO)	0.00	0.75	1.50	2.25	3.00
/itamin and Mineral mix	0.65	0.65	0.65	0.65	0.65
/itamin C	0.05	0.05	0.05	0.05	0.05
Choline Chloride	0.50	0.50	0.50	0.50	0.50
nositol	0.04	0.04	0.04	0.04	0.04
Ca(H ₂ PO ₄)	1.50	1.50	1.50	1.50	1.50
Total	100.00	100.00	100.00	100.00	100.00







Results	FATTYACID(S)					
results	initi incib(3)	DietA	DietB	DietC	DietD	DietE
	12:0	0.23±0.04ª	5.51±2.79 ^{ab}	14.87±0.41 ^{bc}	19.64±0.36°	20.97±5.60=
Fatty acid	14:0	3.63±0.13 ^a	5.56±0.23 ^{ab}	6.84±0.04 ^{ab}	8.31±0.05 ^b	8.65±1.10 ^b
(FA)	Total SFA's	21.90±8.12	25.64±4.54	38.01±2.70	49.37±1.51	53.17±9.37
composition	18:1(n-9)	19.98±7.53	19.11±6.26	21.65±0.70	13.91±4.50	10.71±3.92
(% total FA)	TOTAL	38.42±13.99	37.65±13.50	30.60±1.18	25.44±9.59	21.62±10.58
<u>o f</u>	MUFAs					
experimental	18:2(n-6)	25.22±2.38	25.96±0.81	24.14±0.76	20.87±0.26	23.12±5.01
<u>diets</u>	20:4(n-6)ARA	0.49±0.06ª	$0.19{\pm}0.10^{ab}$	0.16±0.08b	0.11±0.03b	0.04±0.02b
	Total n-6	25.73±2.45	26.15±0.91	24.34±0.86	20.98±0.29	23.16±5.03
	18:3(n-3)	0.46±0.12 ^a	0.27±0.03 ^{ab}	0.27±0.06 ^{ab}	0.27±0.05 ^{ab}	0.11±0.05b
	20:5(n-3)EPA	4.18±0.40 ^a	3.56±0.07ª	2.40±0.05°	1.57±0.05 ^b	0.85±0.01b
	22:6(n-3)DHA	7.35±0.81b	5.22±0.17b	3.35±0.07 ^b	1.87±0.07ª	0.87±0.06ª
	Total n-3	13.25±1.87ª	10.19±0.75b	6.45±0.22°	$3.98{\pm}0.18^{d}$	1.98±0.16°
	Total PUFAs	39.13±4.37 ^b	36.46±1.72b	30.92±1.09b	25.07±0.48ª	25.21±5.20ª
	Total LC-PUFAs	12.53±1.73ª	9.63±0.76 ^b	6.34±0.24°	3.82±0.16 ^d	1.87±0.10°
	Total MC-PUFAs	26.45±2.60ª	26.71±0.90ª	24.45±0.84b	21.14±0.31°	23.27±5.19b
2		A 5940 76				


Result		ody and muse	le of Nile tilapia	ure, crude lipid, protein a fed different diets for	8 weeks
	Initial whole	Diet A body	Diet B	Diet C Diet D Final whole body	Diet E
Moisture	10.75±1.20	11.40±1.45	11.21±0.90	11.18±1.20 11.07±0.31	11.09±0.58
Protein	63.30±1.42	58.40±0.87	59.69±0.33	61.00±1.60 62.61±2.46	64.06±1.48
Lipid	7.04±0.32 ^{bc}	2.74±0.90°	3.26±0.33ª	4.67±0.59 ^{ab} 7.44±0.36 ^c	6.62±0.15 ^{kc}
Ash	0.28±0.004	0.80±0.01ª	0.73±0.01 ^b	0.72±0.00 ⁶ 0.78±001 ^{ac}	0.72±0.01*
			MUSCLE		
Moisture		10.45±0.15 ^a	10.52±0.86 ^a	10.42±0.48° 10.69±0.18 ^{ab}	10.90±0.905
Protein		94.33±0.41ª	95.85±0.20±	96.47±0.32 ^b 95.63±0.60 ^{ab}	96.48±0.26 ^b
Lipid		2.22±0.22ª	1.77±0.18ab	1.15±0.04 ^{bc} 1.07±0.17 ^{bc}	0.90±0.13°
Ash		0.28±0.00 ^{ab}	0.26±0.00 ^{ab}	0.27±0.00 ^{4b} 0.25±0.02 ^a	0.29±0.00 ⁶

Results	<u>Fatty aci</u>	d (%area) of <mark>whole</mark>	e body of tilapia <u>fe</u>	d diets of elevated N	/CO levels for 8 w
FATTYACID(S)					
	DietA	Diet B	DietC	DietD	DietE
12:0	0.000±0.00°	2.40±0.07 ^b	5.27±0.46 ^b	7.39±0.59ª	8.93±0.65ª
14:0	3.68±0.07ª	4.18±0.43 ^a	6.44±0.31°	7.61±0.35 ^b	8.67±0.31 ^b
Total SFA's	38.59±0.46ª	39.64±0.83ª	44.61±1.62 ^b	46.14±1.87 ^b	48.61±1.74 ^b
18:1(n9)	30.60±0.32ª	30.02±0.35 ^{ab}	28.79±0.73 ^{abc}	27.64±0.43°	26.91±0.47 ^{bc}
TOTAL	41.89±2.91 ^b	39.68±0.51b	39.00±1.25 ^b	36.30±1.42ª	35.35±1.67ª
MUFAs					
18:2(n6)	16.11±0.39 ^{ab}	18.25±0.20ª	15.22±1.00 ^{ab}	16.40±0.90 ^{ab}	14.39±0.59 ^b
20:4(n6)ARA	0.11±0.06	0.17±0.06	0.14±0.05	0.08±0.05	0.16±0.14
Total n-6	16.22±0.45	18.42±0.26	15.39±1.08	16.48±0.95	14.55±0.73
18:3(n3)	0.27±0.12	0.12±0.02	0.19±0.06	0.18±0.04	0.11±0.09
20:5(n3)EPA	0.13±0.10	0.10±0.02	0.12±0.08	0.18±0.05	0.13±0.05
22:6(n3)DHA	2.03±0.06 ^b	1.28±0.03 ^b	0.94±0.03 ^b	0.50±0.06ª	0.40±0.03ª
Total n-3	3.17±0.55℃	2.18±0.32ª	1.66±0.11 ^{ab}	1.01±0.22 ^b	1.04±0.34 ^b
Total PUFAs	19.39±1.0ª	20.60±0.58ª	17.05±1.19	17.49±1.17 ^b	15.59±1.07°
Total LCPUFAs	2.91±0.39ª	1.96±0.23 ^{ab}	1.58±0.19 ^{ab}	0.85±0.19 ^b	0.99±0.33 ^b

esults	Fatty acid C	mposition of	muscle (% are	a) of tilania fed di	ifferent diets for 8 w
FATTY ACID(S)			inuscie (70 area		interent diets for 8 w
	DietA	Diet B	DietC	Diet D	DietE
12:0	0.00±0.00ª	1.44±0.43 ^{ab}	2.81±0.05 ^{ab}	6.03±1.28 ^{bc}	7.61±1.86°
14:0	2.48±0.14ª	2.70±0.19ª	3.97±0.37 ^{ab}	4.78±1.09 ^{ab}	6.26±1.11 ^b
Total SFA's	40.56±1.36ª	46.27±1.90 ^{ab}	52.33±1.46 ^{bc}	50.00±4.07bc	53.20±4.80°
18:1(n9)	22.71±0.68 ^{ab}	22.00±0.28 ^{ab}	21.65±0.18 ^{ab}	23.24±0.77ª	20.93±0.25b
TOTAL MUFAs	31.86±1.82 ^{abc}	29.15±0.61ª	29.06±0.85 ^b	30.11±1.69°	
18:2(n6)	13.31±0.15 ^{sb}	14.81±0.71b	10.92±0.14ª	13.90±0.60b	13.24±0.70 ^{ab}
20:4(n6)ARA	1.93±0.33	1.37±0.30	1.08±0.17	1.52±0.62	0.11±0.23
Total n-6	15.47±0.62	16.18±1.01	12.00±0.31	15.42±1.22	13.35±0.93
18:3(n3)	0.15±0.06	0.18±0.13	0.16±0.09	0.55±0.14	0.37±0.03
20:5(n3)EPA	0.06±0.06	0.02±0.02	0.03±0.02	0.06±0.03	0.08±0.01
22:5(n3)	1.52±0.65 ^b	0.00±0.00 ^a	0.00±0.00ª	0.00±0.00 ^a	0.00±0.00ª
22:6(n3)DHA	9.02±0.14 ^d	6.53±0.23ª	5.04±0.69 ^{ab}	2.31±0.38°	3.14±0.54 ^{bc}
Total n-3	12.37±1.34 ^b	8.05±0.61 ^b	6.55±1.01b	3.42±0.82ª	4.42±0.70ª
Total PUFAs	27.84±1.96 ^b	24.23±1.62 ^b	18.55±1.32ª	18.84±2.04ª	17.77±1.63ª
Total LCPUFAs	14.38±1.75 ^b	9.24±0.78 ^b	7.47±1.09 ^b	4.39±1.30ª	4.16±0.90ª
Total MCPUFAs	13.46±0.21ª	14.99±0.84 ^a	11.08±0.23 ^b	14.45±0.74ª	13.61±0.73ª
n-ən-6	0 70+2 16	0.50+0.60	0.55+3.26	0 22+0 67	0.33+0.75

Results	Liver fatty a	cid composition o	f O. niloticus fed el	evated levels VCO	for 8 weeks		
FATTY ACID(S)							
	DietA	Diet B	DietC	Diet D	Diet E		
12:0	0.00±0.00ª	0.34±0.17ª	3.02±0.76 ^b	4.15±0.89 ^{bc}	6.30±0.21°		
14:0	3.32±0.24	4.59±0.15	6.05±0.10ª	6.64±0.28ª	8.32±0.08		
Total SFA's	39.23±4.03 ^b	50.10±3.52 ^b	52.04±1.53ª	48.85±6.80 ^b	52.59±5.27ª		
18:1(n9)	27.41±0.29 ^b	31.38±1.72 ^{ab}	29.58±1.13 ^{ab}	33.08±0.92ª	26.52±0.74 ^b		
TOTAL	39.61±1.13 ^{ab}	40.84±2.89ª	37.421.95°	40.65±2.00 ^b	33-39±2.29 ^d		
MUFAs							
18:2(n6)	11.45±1.26	9.27±0.78	7.15±0.07	8.82±1.96	9.36±0.45		
20:4(n6)ARA	0.08±0.08	0.19±0.19	0.00±0.00	0.00±0.00	0.49±0.49		
Total n-6	11.53±1.34	9.46±0.97	7.15±0.07	8.82±1.96	10.24±1.33		
20:5(n3)EPA	0.16±0.16ª	3.06±1.17 ^b	0.07±0.07ª	0.00±0.00ª	0.08±0.08ª		
22:6(n3)DHA	6.25±0.38°	1.05±0.39 ^b	3.20±0.27ª	1.06±0.12 ^b	2.48±0.78 ^{ab}		
Total n-3	8.49±1.26°	5.17±1.61°	3.67±0.55ª	1.60±0.12 ^b	2.88±1.18 ^{ab}		
Total PUFAs	20.83±3.11ª	14.63±2.58°	10.82±0.62 ^b	10.42±2.08ab	13.12±2.51°		
Total LCPUFAs	8.41±1.18°	5.36±1.80°	03.42±0.42ª	1.60±0.12 ^b	2.88±1.18 ^{ab}		
Total MCPUFAs	11.61±1.42°	9.27±0.78 ^b	7.40±0.20ª	8.82±1.96 ^{ab}	9.36±0.45 ^b		
n-२:n-6	0.74±0.94°	0.55±1.66ª	0.51±7.86ª	0.18±0.06 ^b	0.28±0.89 ^b		

Results	lasma metabolites	O. niloticus fed or	n elevated levels of	VCO for 8 weeks	
Parameters/Lipid sources	DietA	DietB	DietC	Diet D	Diet E
HDLCholesterol	2.85±0.12ª	2.04±0.30 ^b	2.60±0.10ªb	2.35±0.07 ^{ab}	2.51±0.10 ^{ab}
LDLCholesterol	0.43±0.03	0.32±0.06	0.27±0.02	0.38±0.04	0.51±0.09
HDLC/LDLC	6.63±4.00ª	6.38±5.00ªb	9.63±5.00°	6.18±1.75 ^{ab}	4.92±1.11 ^b

Results					
<u>Mortal</u>	<u>ity (%) of (</u>	<u>). niloticu</u>	<u>s 16 day po</u>	ost <u>S. iniae</u>	<u>challenge</u>
Lipid sources	Diet A	Diet B	Diet C	Diet D	Diet E
Mortality	53.33±0.67	40.0±2.31	33.33±1.33	46.67±1.76	26.67±1.76

Discussion

- \bullet >WG, FW and FI in VCO: (Ng et al., 2013; Aderolu & Akinremi, 2009; Pie et al., 2004.)
- Good growth performance: ($\,$ Yildrim-Aksoy et al., 2007)
- MUFA's in VCO sparing protein for tissue growth: (Eckarstein et al., 2002)
- FA composition of fish depends on FA profile of diets: (Luo et al., 2004.)
- Varying differences in SFA's: (Trushenski et al., 2008; 2009.)

Discussion

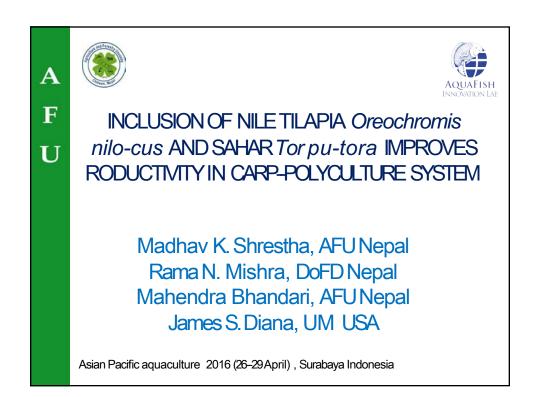
- Significant TG: (Vegusdal et al., 2005; Yildrim-Aksoy et al., 2013.)
- < Plasma cholesterol: Agree- Richard et al., 2006.
- <LDL-C: Agree- Nevin & Rajamohan, 2004.
- Mortality in group A and C: Agree Kiron et al., 1995
- >Survival in fish fed diet E: Agree Ogbolu et al., 2007; Fracalossi & Lovell, 1994; Eckarstein et al., 2002; Manisha et al., 2011.

Conclusion

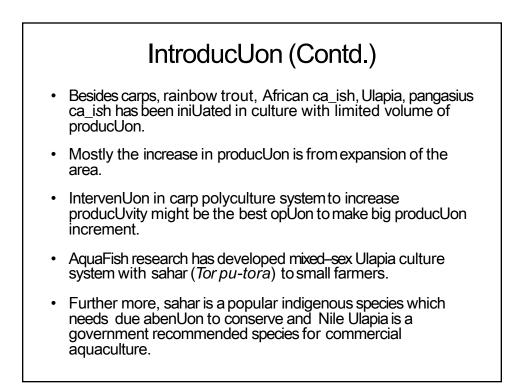
- · VCO did not impair growth, feed utilization and body composition
- · Diets were accepted indicating the suitability of lipid at 3% inclusions
- Diet E exhibited the best performance showing the importance of n-6 to freshwater fishes
- decrease in muscle lipid of fish fed increasing levels of VCO, and increase in the crude protein of whole body and the muscle. This indicates better utilization of protein for growth as evident in the results obtained for PER.
- · Plasma metabolites were not impaired by alternative lipid
- · VCO has potential to replace FO in diets for tilapia
- Recommended to countries which has high productions in CO to use as lipid fish diets.

Acknowledgement

- This study received financial support through the EU- FP7 project "Sustaining Ethical Aquaculture Trade" (SEAT),
- Shanghai Science & Technology Committee through program No. 13320502200.
- the Aquaculture and Fisheries Collaborative Research Support Program (AquaFish CRSP) through Oregon State University and Michigan University,

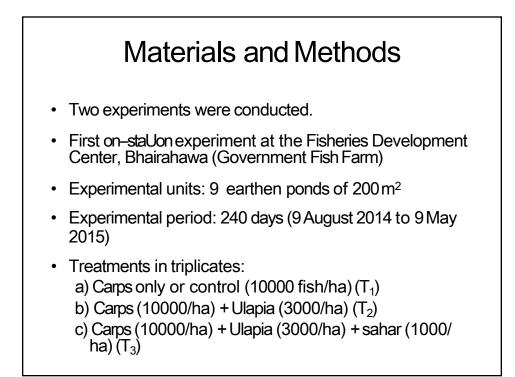

Inclusion of Nile tilapia Oreochromis niloticus and Sahar Tor putitora improves reporductivity in carp-polyculture system

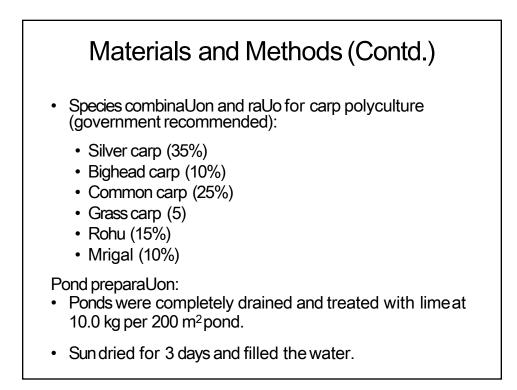

Mahendra Bhandari, Rama N. Mishra, Madhav K. Shrestha, and James S. Diana Directorate of Fisheries Development Balaju, Kathmandu, Nepal aryanmishra017@gmail.com

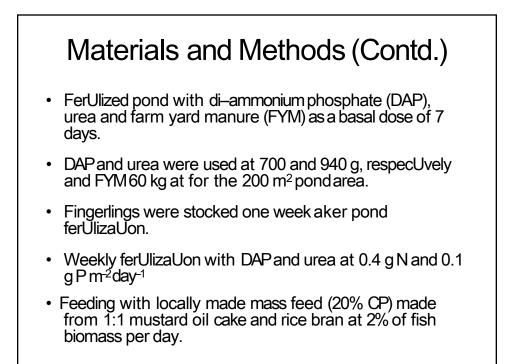

Carp polyculture is commonly practiced in Nepal but improving productivity of this aquaculture system is a major concern. An experiment was conducted at the Fisheries Development Center, Bhairahawa, Nepal in nine earthen ponds of 200 m² for 240 days (9 August 2014 to 9 May 2015). The experiment was conducted in a completely randomized design with three treatments in triplicate: a) Carps only or control (10000 fish/ha) (T₁); b) Carps (10000/ha) + tilapia (3000/ha) (T_2) ; and c) Carps (10000/ha) + tilapia (3000/ha) + sahar (1000/ha) (T_3). Silver carp (Hypophthalmichthys molitrix), bighead carp (Aristichthys nobilis), common carp (Cyprinus *carpio*), grass carp (*Ctenopharyngodon idella*), rohu (*Labeo rohita*) and mrigal (*Cirrhinus mrigala*) of mean stocking size 6.7, 3.8, 7.3, 3.1, 1.9 and 2.0 g, respectively were stocked in all ponds at the ratio of 3.5:1:2.5:0.5:1.5:1. The mean stocking size of Nile tilapia (Oreochromis niloticus) and sahar (Tor putitora) were 4.4 and 7.2 g, respectively. The ponds were fertilized weekly with urea and di-ammonium phosphate at 4 g N and 1 g P m⁻² day⁻¹. Fish were fed once daily with locally made pelleted feed (1:1 rice bran and mustard oil cake; 20% CP) at 2% body weight. At harvest, the combined net fish yield was significantly higher in T₃ $(3.93\pm0.15 \text{ t}\cdot\text{ha}^-$ ¹·yr⁻¹) compared to T_1 (3.05±0.26 t·ha⁻¹·yr⁻¹) whereas there was no significant difference between T_2 and T_3 (Table 1). There were no significant differences in survival and water quality among treatments. The gross profit margin was significantly higher in T₃ (2357.4±210.8 USD/ha) compared to T_1 (1299.5±315.9 USD/ha) without any significant difference between T_2 and T_3 .

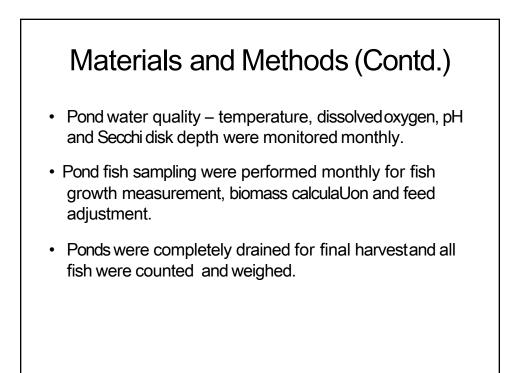
		Treatments	
_	Carp polyculture	Tilapia + carps	Sahar + tilapia + carps
Parameters	(T ₁)	(T ₂)	(T ₃)
GFY (t·ha ⁻¹ ·yr ⁻¹)			
Carps	3.13±0.26 ^a	3.02±0.15 ^a	3.33±0.12 ^a
Nile tilapia	-	0.49±0.05ª	0.45 ± 0.02^{a}
Sahar	-	-	0.14 ± 0.02
Combined	3.13±0.26 ^b	3.51±0.20 ^{ab}	3.93±0.16 ^a
Including tilapia recruit	-	3.72±0.22 ^a	4.04±0.15 ^a
NFY (t/ha/yr)	3.05 ± 0.26^{b}	3.57 ± 0.25^{ab}	3.93±0.15 ^a
Overall survival	81.2±5.1ª	76.0±3.0 ^a	80.5±1.3ª
Gross margin (USD [·] ha ⁻ ¹ ·yr ⁻¹)	1300±316 ^b	1568±182 ^{ab}	2357±211ª

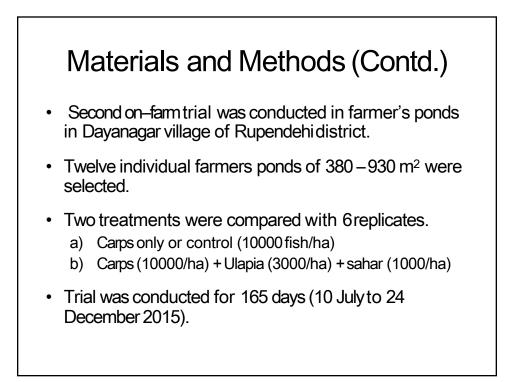
TABLE 1. Production and economic parameters of different treatments (Mean \pm SE). Mean values with different superscript letters within a row are significantly different (p<0.05)

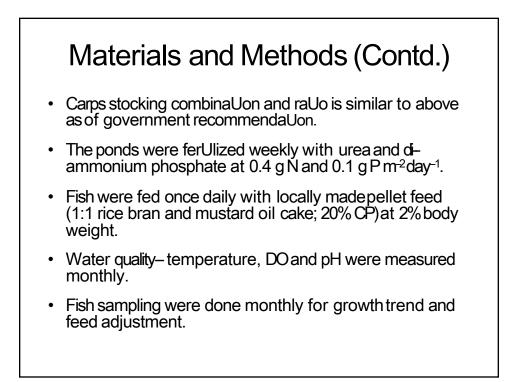


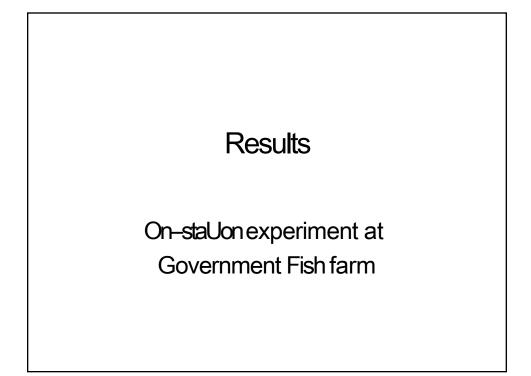


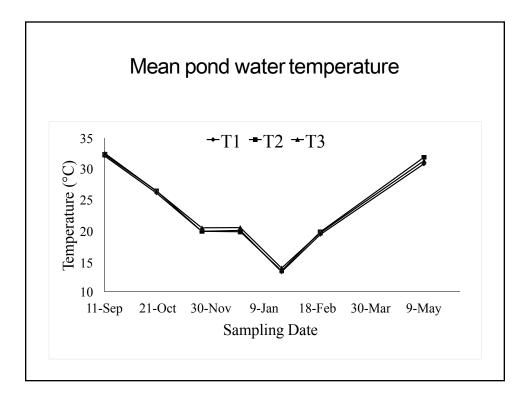

 Inclusion of Ulapia and sahar in carp polyculture system might be a small intervenUon but significant growth in aquaculture producUon if it increases producUvity.

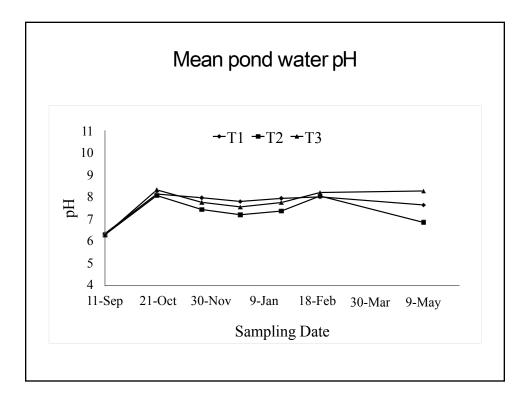

ObjecUves:

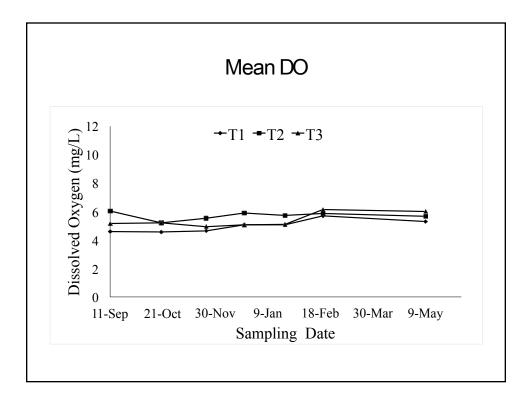

- To increase pond producUvity through species diversificaUon;
- To assess the producUvity of carp polyculture system with adding Ulapia and Ulapia-sahar species.
- To develop parUal enterprise budgets of costs and values of fish crops in different polyculture systems.

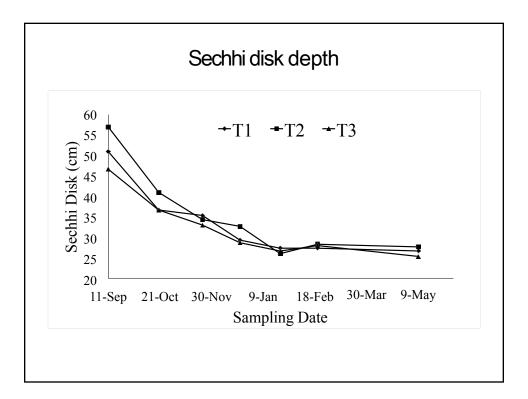




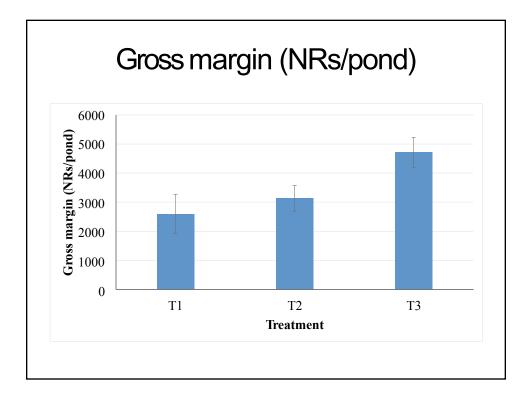


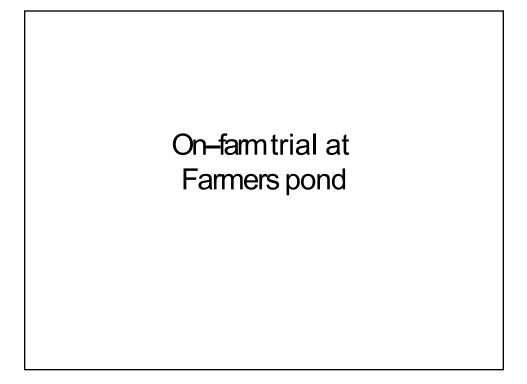



Parameters		Treatments		
	Carps only (T1)	Carps + tilapia (T2)	Carps+tilapia+sahar (T3)	
Extrapolated (GFY (t/ha/yr)			
Carps	3.13±0.26 ^a	3.02±0.15 ^a	3.33±0.12ª	
Tilapia	-	0.49±0.05ª	0.45±0.02ª	
Sahar	-	-	0.14±0.02	
Combined	3.13±0.26 ^b	3.51±0.20 ^{ab}	3.93±0.16 ^a	

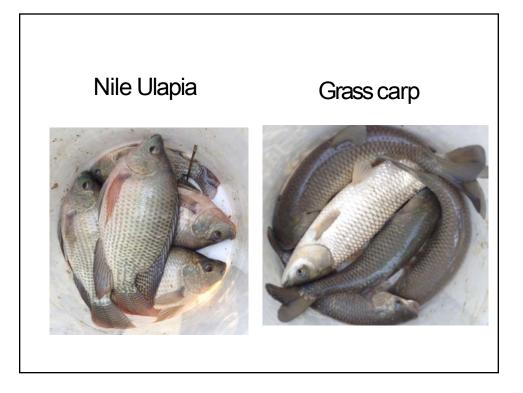

ProducUon c	omparison b	etween treatn	nents (Contd.)			
		Treatments				
Parameters	Carps only (T1)	Carps + tilapia (T2)	Carps + tilapia + sahar (T3)			
Extrapolated GFY (t/ha/yr)						
With recruits	3.13±0.26 ^b	3.72±0.22 ^{ab}	4.04±0.15 ^a			
Extrapolated						
NFY(t/ha/yr)	3.05±0.26 ^b	3.57±0.25 ^{ab}	3.93±0.15 ^a			
AFCR	2.53±0.24ª	2.62±0.17 ^a	2.41±0.11ª			
Survival (%)	81.2±5.1ª	76.0±3.0ª	80.5±1.3			

Tilapia recruits (per pond)				
Size	Parameter	T2	Т3	
	Total count	2829	795	
Small (2–3 cm)	Total wt. (kg)	4.71	1.21	
(,	Mean wt. (g)	1.66±0.06	1.53±0.06	
	Total count	152	149	
Large (6–10 cm)	Total wt. (kg)	3.49	3.29	
	Mean wt. (g)	22.9 ±1.0	21.3 ±1.3	

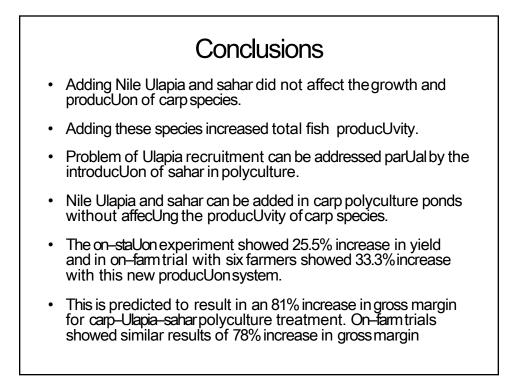




Gross margin (USD/pond)			
ParUculars	carps	Carps + Ulapia	Carps + Ulapia + sahar
Total input	45.01±0.21b	53.50±2.12ª	55.07±0.58ª
Total output	71.00±6.53 ^b	84.87±5.76 ^{ab}	102.22±4.80ª
Gross margin	24.90±6.32 ^b	31.37±3.54 ^{ab}	47.15±4.22ª
Gross margin/ha	1300±316 ^b	1570±177 ^{ab}	2357±211 ª

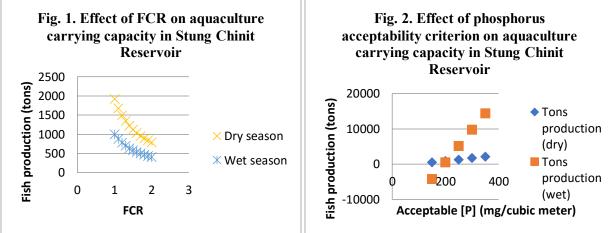


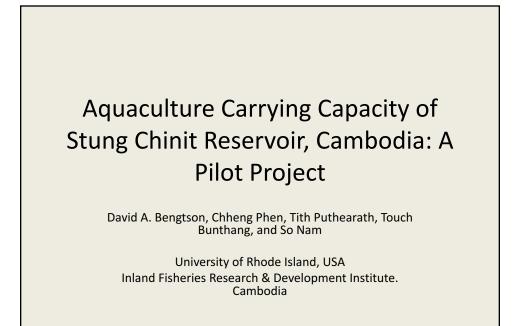
	F	ween treatments		
Parameters	Treatment			
	Carps only (T1)	Carps + Ulapia + sahar (T2)		
GFY (t-ha-1-crop-1)	2.2±0.1b	2.9±0.4 ª		
NFY (t·ha-1·crop-1)	2.1±0.1 ^b	2.8±0.4 ª		
GFY (t·ha-1·yr-1)	4.4 ± 0.2^{b}	5.8±0.8 ª		
NFY (t·ha-1·yr-1)	4.2 ± 0.2^{b}	5.6±0.8 ª		
Survival (%)	74.0 ± 2.4^{b}	89.9±2.3 ª		
AFCR	2.6±0.4 a	2.2±0.3 ^a		

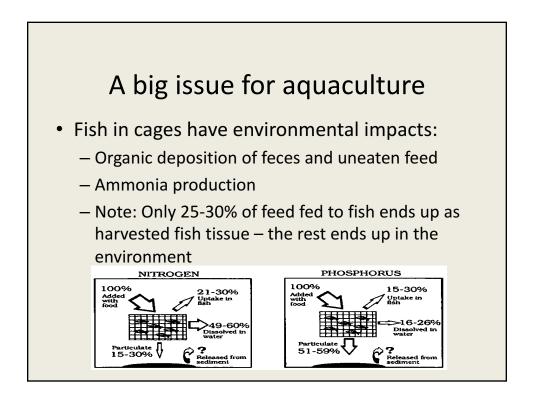

Water Quality				
Parameters	Treatment			
	Carps only (T1)	Carps + Ulapia + sahar (T2)		
Temperature (°C)	28.3±2.6 (21.0 - 34.5)	27.4±2.4 (21.3 – 35.1)		
DO (mg·L ⁻¹)	3.4±0.2 (1.4 – 5.1)	3.4±0.2 (0.3 - 6.7)		
рН	7.5 (7.0 – 8.3)	7.6 (7.1 – 9.0)		

Gross margin (USD/500 m ² pond)
--

Parameters	Treatment	
	Carps only (T1)	Carps + Ulapia + sahar (T2)
Total input	118.0±2.5	156.5±5.0
Total output	208.0±12.9	317.4±22.3
Gross margin	90.0±12.5 ^b	161.0±18.4*
Gross margin/ha	1800±250 ª	3219±367*

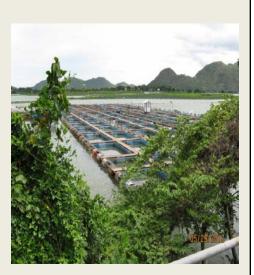



AquaFish Technical Session 2 Innovations in Smallholder Aquaculture Technology: AquaFish Research on Sustainable Systems


Aquaculture carrying capacity of Stung Chinit Reservoir, Camboida: A pilot project

David Bengtson, Phen Chheng, Puthearath Tith, Bunthang Touch, Nam So Department of Fisheries, Animal and Veterinary Sciences University of Rhode Island Kingston, Rhode Island 02881, USA dbengtson@uri.edu

The objective of the study was to plan for sustainable aquaculture development in Cambodia by training Cambodian scientists in the use of models to estimate the amount of aquaculture waste. Staff of the Inland Fisheries Research and Development Institute were trained in the uses of modeling to estimate Aquaculture Carrying Capacity (ACC). Stung Chinit Reservoir, located in Kampong Thom province, was selected as the pilot study site. We used mass-balance modeling of phosphorus (P) to calculate ACC under different scenarios of feed conversion ratio (FCR) and acceptable [P] levels, and we modeled wet seasons and dry seasons separately. The results showed that in the best scenario with acceptable phosphorus concentration ([P]) at 200 mg/m³ and FCR at 1.8, farmers could produce 895 tons of snakehead in dry season or 467 tons in wet season. Setting acceptable [P] at 200 mg/m³ and just varying FCR demonstrates that an FCR of 2.0 allows only 790 tons of snakehead production during the dry season and 412 tons during the wet season, whereas lowering the FCR to 1.0 will allow 1918 tons of snakehead production during the dry season and 1000 tons during the wet season (Fig. 1). Holding FCR constant at 1.8, setting acceptable [P] at 150 mg/cubic meter means that aquaculture will not be allowed in Stung Chinit; however, setting acceptable [P] at 350 mg/m³ means that 2138 tons will allowed during the dry season and 14,448 tons during the wet season (Fig. 2). Because snakehead production takes longer than one season, we recommend using the lower of the dry season and wet season values to determine annual production levels. Using P mass-balance modeling to project acceptable snakehead production levels in Stung Chinit Reservoir provides government officials, and especially farmers (lowering FCR means more allowable fish production), to see the impacts of different scenarios on potential snakehead production in Cambodian reservoirs.

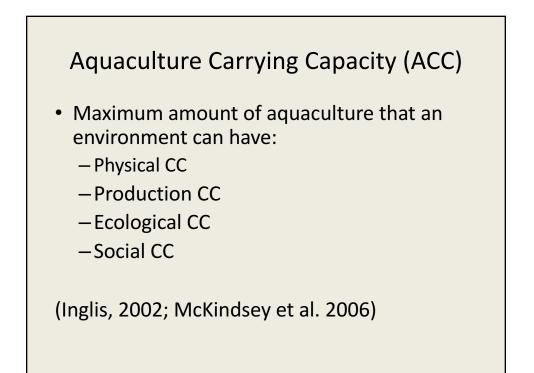


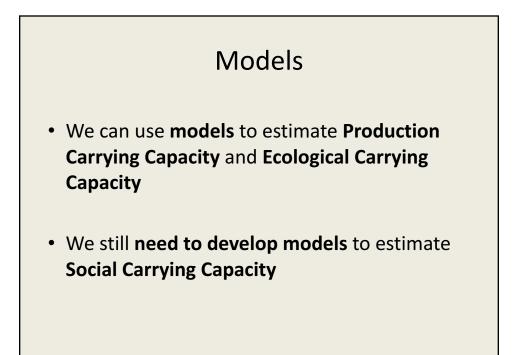
Ecosystem services

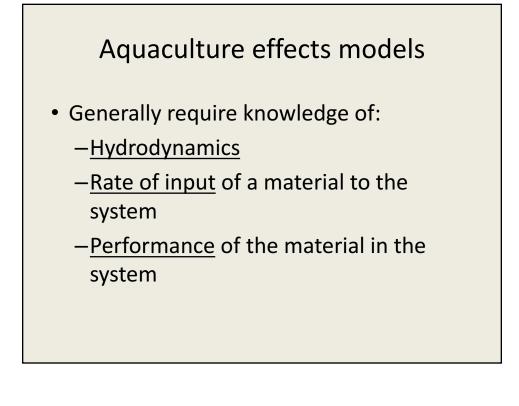
- The ecosystem provides services if it is not overwhelmed:
 - -Primary production
 - -Nitrification (ammonia \rightarrow nitrate)
 - -Decomposition of organic matter

Open water bodies

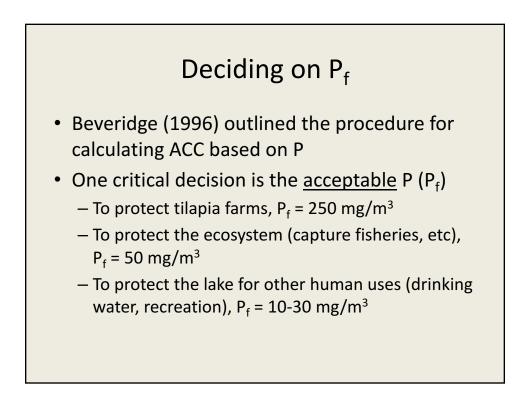
- Lakes, reservoirs, estuaries, bays
- Fish in cages rely on ecosystem services outside the cages via water flow
 - Remove feed and feces
 - Remove ammonia
 - Remove CO₂
 - Provide O₂




How much fish production is too much?


Many farms together may have an <u>ecosystem-level</u> <u>impact</u>

> Overwhelms the ecosystem services, not only for the farms, but for everything else



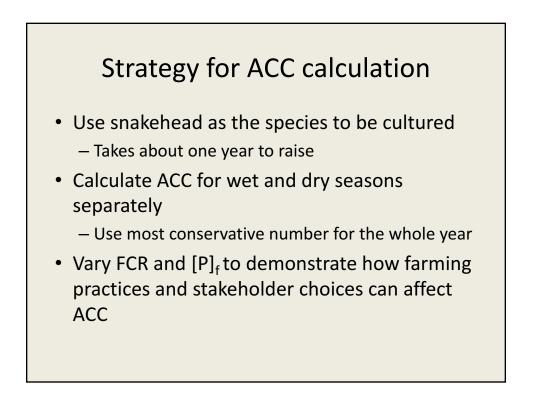
Mass-balance for phosphorus (P)

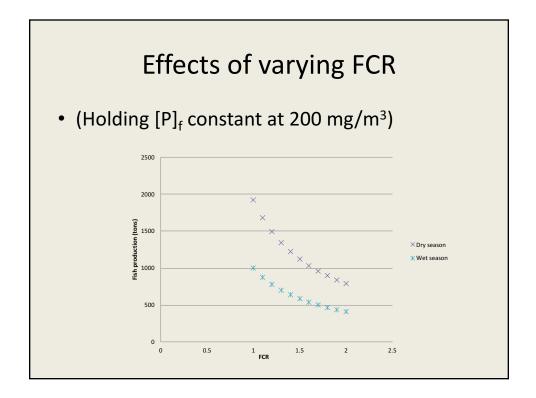
• <u>Need to know</u>:

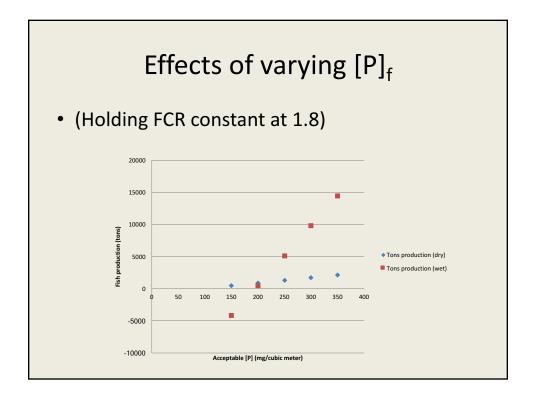
- Volume of lake; inflow and outflow (turnover rate)
- Ambient P level (P_i) in lake (before aquaculture)
- What level of P is acceptable (P_f) (protect fish farms only or protect the ecosystem, including fisheries)
- Potential P inputs from fish culture based on species, FCR, P retention by fish,...
- Can calculate:
 - $-\Delta P = P_f P_i$
 - The amount of fish culture allowed by ΔP (i.e., how much more P is allowed due to aquaculture)

Critical variables

- Some critical variables in the equations can greatly affect the ACC calculated, e.g.:
 - -FCR
 - -P content of feed
 - -Acceptable [P]_f

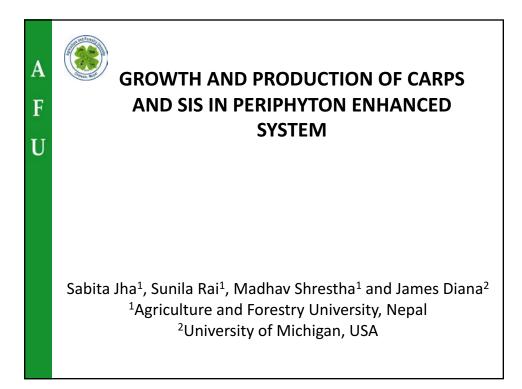


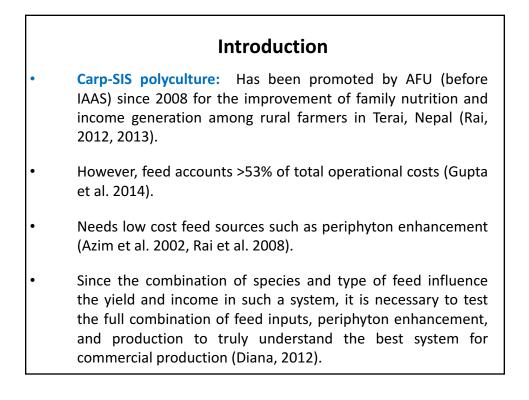



- Cambodia has reservoirs and is planning to build more. They would like to conduct aquaculture in them without exceeding ACC
- We trained IFReDI staff in P mass-balance modeling
- Then calculated ACC for Stung Chinit Reservoir (Kampong Thom province) as a pilot project
- (Also provided outreach material on ACC to fishery officers)

Stung Chinit Reservoir				
Variable	Dry Season	Wet Season		
Area (m²)	5,140,000	16,720,000		
Flow (m ³ /season)	460,000,000	1,586,000,000		
[P] _i (mg/m ³)	92	195		

Conclusions

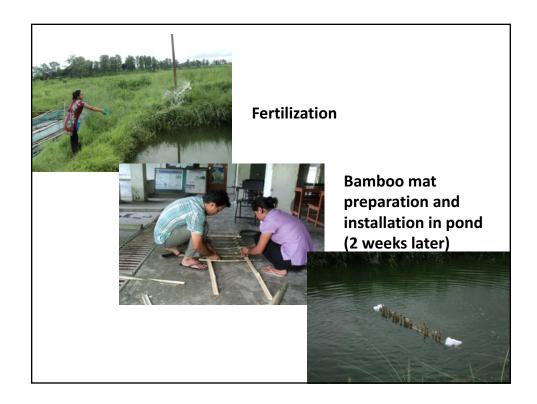

- With varying FCR, wet season ACC is always lower than the dry season ACC and therefore determines the year-round acceptable production
- With varying [P]_f, wet season ACC is higher and the dry season ACC determines the acceptable year-round production
- IFReDI scientists can now apply their knowledge of P mass-balance models to other reservoirs as needed



Growth and production of carp and SIS in periphyton enhanced systems

Sabita Jha, Sunila Rai*, Madhav K Shrestha, and James S Diana Department of Aquaculture and Fisheries Agriculture and Forestry University, Rampur, Chitwan, Nepal sunilarai10@gmail.com

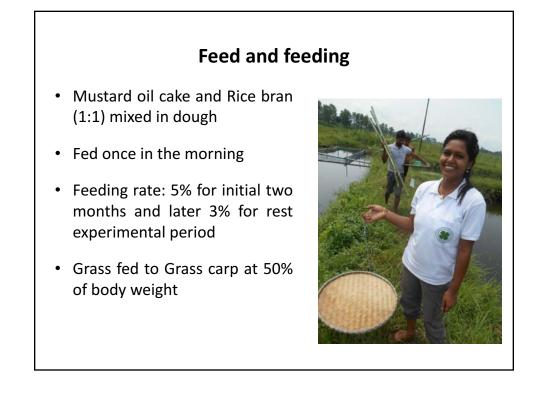
Role of small indigenous fish species (SIS) has been recognized for improving family nutrition in small-scale household aquaculture. An experiment was conducted at Agriculture and Forestry University (AFU), Chitwan, Nepal to compare fish production between carp-SIS polyculture and periphyton enhanced carp-SIS polyculture in order to develop a cost effective means to increase fish production. The experimental period was of 210 days from 24 August 2014 to 28 March 2015. The experiment included four treatments, T₁ (Carp+100% Supplemental feed), T₂ (Carp+SIS+100% Supplemental feed), T₃ (Carp+SIS+50% Supplemental feed + Bamboo substrate at the rate of 1 % of pond surface area) and T₄ (Carp+SIS+Bamboo substrate) each with three replicates. Silver carp (*Hypophthalmichthys molitrix*), bighead carp (*Aristichthys nobilis*), grass carp (Ctenopharyngodon idella), common carp (Cyprinus carpio), rohu (Labeo rohita) and naini (Cirrhina mrigala) were stocked at a ratio of 4:1:4:3:5 at rate of 15,000 fish/ha whereas two SIS, dedhuwa (Esomus danricus) and pothi (Puntius sophore) were stocked at a ratio of 1:1 at density of 50,000 fish/ha. Carps were fed with freshly made dough of mustard oil cake and rice bran (1:1) at 5% of body weight per day whereas Grass carp was fed with grass at 50% of body weight per day. Growth and vield of common carp was significantly? higher in T₃ than all other treatments indicating both periphyton and supplementary feed at a reduced rate produced the best growth. Growth and production of grass carp was higher in ponds without substrate. Carp yield and combined NFY was higher in T₃ due to the higher survival and growth rate of carp caused by periphyton and supplementary feed. Production of SIS was lower in substrate ponds. Gross margin was highest in T₃, intermediate in T₄ and lowest in T₂. Based on fish production and profit, supplemental feeding at 50% combined with periphyton enhancement was best among treatments.


Objectives

- To compare growth and yield of carps, and yield of SIS with or without periphyton enhancement
- To compare water quality among different polyculture systems
- To compare the profit among different polyculture systems

 Experimental site: AFU Average pond size: 150.9±4.1 m² (117.7-168.5 m²) Duration: 210 days (24 August 2014 - 28 March 2015) Experimental design: CRD Treatment Combination Substrate Feeding T1 Carp No 100% feeding T2 Carp+SIS No 100% feeding T3 Carp+SIS Split bamboo 50% feeding 	Materials and methods						
 Duration: 210 days (24 August 2014 - 28 March 2015) Experimental design: CRD Treatment Combination Substrate Feeding T1 Carp No 100% feeding T2 Carp+SIS No 100% feeding 	• Experimental	site: AFU					
 Experimental design: CRD Treatment Combination Substrate Feeding T1 Carp No 100% feeding T2 Carp+SIS No 100% feeding 	Average pond	d size: 150.9±4.1	. m² (117.7- 168.	5 m²)			
TreatmentCombinationSubstrateFeedingT1CarpNo100% feedingT2Carp+SISNo100% feeding	• Duration: 210 days (24 August 2014 - 28 March 2015)						
T1CarpNo100% feedingT2Carp+SISNo100% feeding	Experimental design: CRD						
T2 Carp+SIS No 100% feeding	Treatment	Combination	Substrate	Feeding			
	T1	Carp	No	100% feeding			
T3 Carp+SIS Split bamboo 50% feeding	Т2	Carp+SIS	No	100% feeding			
	Т3	Carp+SIS	Split bamboo	50% feeding			
T4 Carp+SIS Split bamboo No feeding	Т4	Carp+SIS	Split bamboo	No feeding			

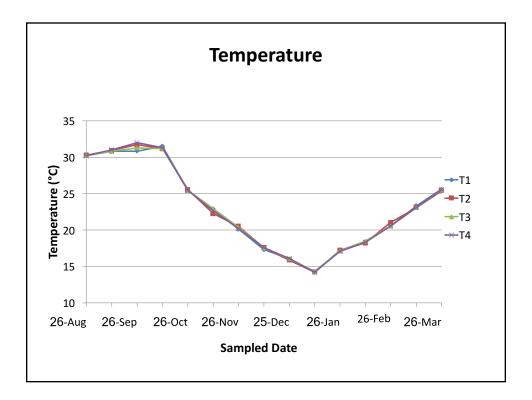
Pond preparation

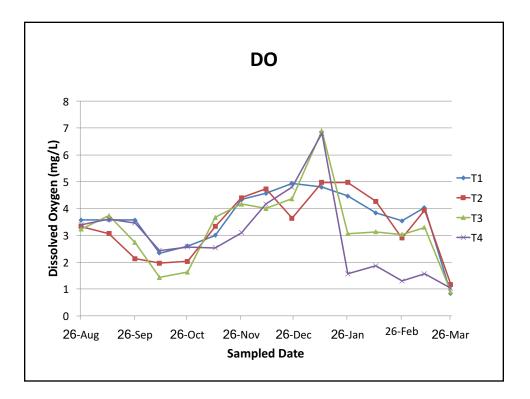

- Fertilization: Urea- 470 g/100 m^2 and DAP- 350g/100 m^2
- Substrate preparation: Split bamboo mat (20-35 splits, split size 4 cm x 75 cm)
- Float: Styrofoam as float at top edges of mat
- Sinker: Brick as weight at bottom edges of the mat
- Two mats per pond
- Surface area of substrate equivalent to water surface area 1%
- Vertical positioning

Stocking combination					
	T ₁	T ₂	T ₃	T ₄	
Species	Carp	Carp+SIS	Carp+SIS	Carp+SIS	
Carp					
Silver carp	3000	3000	3000	3000	
Bighead carp	750	750	750	750	
Grass carp	2250	2250	2250	2250	
Common carp	3000	3000	3000	3000	
Rohu	3750	3750	3750	3750	
Mrigal	2250	2250	2250	2250	
Sub-total	15000	15000	15000	15000	
SIS					
Pothi		25000	25000	25000	
Dedhuwa		25000	25000	25000	
Sub-total		50000	50000	50000	

- Partial harvesting of SIS: during monthly fish sampling
- Final harvesting: complete draining of the pond

Analytical methods


- Growth check: Monthly, Sampling at least 20% of each Carp species
- Water quality analysis: DO, pH, Temp.- fortnightly Transparency, Total alkalinity, TAN, SRP, Chlorophyll-a – monthly
- Periphyton analysis: Monthly, Scrapping periphyton from 1 cm² surface of bamboo substrate, Dry matter, Ash, Ash free dry matter
- Gross margin analysis: Gross margin
- One-way ANOVA: Water quality, growth, yield and gross margin, Student's t-test - Periphyton biomass


	Res	ults		
	Grass	s carp		
Demonsterre		Treatm	nents	
Parameters	T ₁	T ₂	T ₃	T ₄
Initial mean weight (g/fish)	4.9±0.5ª	4.5±0.5ª	5.1±0.1ª	4.8±0.3ª
Final mean weight (g/fish)	465.4±32.1ª	262.4±24.8 ^{bc}	341.8±81.9 ^{ab}	136.0±39.0°
DWG (g/fish/day)	2.2±0.2ª	1.2±0.1 ^{bc}	1.6±0.4 ^{ab}	0.6±0.2 ^c
TWG (kg/pond)	7.0±0.0 ^a	4.2±0.6 ^{ab}	6.2±0.1 ^{ab}	3.9±1.6 ^b
Survival (%)	45.4±2.6 ^b	36.7±1.5 ^b	47.2±9.5 ^{ab} (59.7±6.6ª
NFY (t/ha/yr)	0.85±0.09 ^a	0.48±0.07 ^b	0.73±0.01 ^{ab}	0.42±0.17 ^b

Common carp					
Demonstern		Treatme	ents		
Parameters	T ₁	T ₂	T ₃	T_4	
Initial mean weight (g/fish)	1.2±0.2ª	1.1±0.1ª	1.0±0.1ª	1.2±0.2ª	
Final mean weight (g/fish)	1062.8±357.2ª	666.0±191.0ª	1167.5±120.2ª	584.9±183.0ª	
DWG (g/fish/day)	5.1±1.7ª	3.2±0.9ª	5.6±0.6ª	2.8±0.9ª	
TWG (kg/pond)	9.1±3.9 ^{ab}	4.5±1.8 ^b	15.8±1.6ª	7.7±1.2 ^b	
Survival (%)	22.7±3.8 ^b	18.4±2.6 ^b (41.6±4.4ª	41.4±7.0 ^a	
NFY (t/ha/yr)	1.01±0.41 ^b	0.52±0.20 ^b	1.88±0.21 ^a	0.83±0.14 ^b	

Net fish yield					
Damanatana		Treatme	ents		
Parameters	T ₁	T ₂	T ₃	T ₄	
GFY Carp only (t/ha/yr)	4.48±0.47 ^{ab}	3.62±0.43 ^b	5.57±0.45ª	4.27±0.40 ^{ab}	
NFY Carp only (t/ha/yr)	4.36±0.47 ^{ab}	3.51±0.42 ^b	5.45±0.45ª	4.15±0.40 ^{ab}	
GFY of SIS only (t/ha/yr)	-	0.35±0.07ª	0.19±0.02 ^b	0.21±0.02 ^{ab}	
NFY of SIS only (t/ha/yr)	-	0.21±0.07ª	0.05±0.02 ^b	0.05±0.02 ^b	
Combined GFY (t/ha/yr)	4.48±0.47 ^{ab}	3.97±0.37 ^b	5.77±0.43ª	4.47±0.40 ^{ab}	
Combined NFY (t/ha/yr)	4.36±0.47 ^{ab}	3.72±0.36 ^b	5.52±0.43 ^a	4.20±0.41 ^{ab}	
Feed conversion ratio (FCR)	2.44±0.30 ^a	2.44±0.21ª	1.02±0.06 ^b	-	

Water quality						
		Treat	ment			
Parameter	T ₁	T ₂	T ₃	T ₄		
рН	6.8	6.8	6.8	6.8		
Temperature (°C)	23.0±0.0ª	23.0±0.1ª	23.0±0.1ª	23.0±0.1ª		
Dissolved oxygen (mg/L)	3.6±0.2ª	3.4±0.2ª	3.3±0.2ª	3.0±0.1ª		
Transparency (cm)	25±5ª	23±2ª	21±1ª	21±1ª		
Total alkalinity (mg/L as $CaCO_3$)	102.7±6.9ª	98.3±1.6ª	95.4±5.0ª	94.5±6.7ª		
Total ammonium nitrogen (mg/L)	0.051±0.020ª	0.031±0.008ª	0.053±0.018ª	0.052±0.004ª		
Soluble reactive phosphorus (mg/L)	0.030±0.011ª	0.026±0.007ª	0.035±0.004ª	0.020±0.004ª		
Chlorophyll-a (mg/m ³)	20.5±5.8ª	20.9±6.1ª	21.5±1.1ª	23.4±1.0ª		

Periphyton biomass				
D	Treat	ment		
Parameters	T ₃	T ₄		
Dry Matter (mg/cm ²)	3.0±0.2ª	2.5±0.2ª		
Ash Content (%)	21.7±1.1ª	22.0±0.2ª		
Ash free dry matter (mg/cm ²)	2.3±0.1ª	2.4±0.1ª		

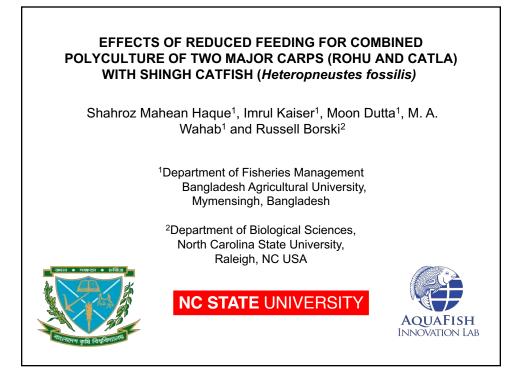
		Treat	ment	
Variables	T ₁	T ₂	T ₃	T ₄
Carp Seed	498.2±4.31ª	501.6±2.6ª	502.7±3.1ª	498.7±3.0ª
SIS Seed		49.9±0.4ª	50.2±0.2ª	49.5±0.2ª
Fertilizer	702.4	702.4	702.4	702.4
Bamboo			250	250
Miscellaneous	420	420	420	
Feed	1627.1±166.1ª	1382.2±6.9ª	871.5±47.5 ^b	
Total Variable cost	3247.7±165.8ª	3056.0±9.9ª	2796.8±46.7 ^b	1850.6±3.2°
Return		ν		
Carp	6440.3±680.3 ^{ab}	5200.6±612.6 ^b	8031.1±631.2ª	6135.9±574.3ab
SIS		509.5±100.9 ^a	323.7±45.4ª	382.7±29.2 ^{ab}
Gross Return	6437.3±680.3 ^{ab}	5710.0±525.2 ^b	8354.7±612.9ª	6518.6±563.1 ^{ab}
Gross Margin	3192.6±622.4 ^{bc}	2653.9±519.9°	5557.9±588.4ª	4618.5±565.9ab

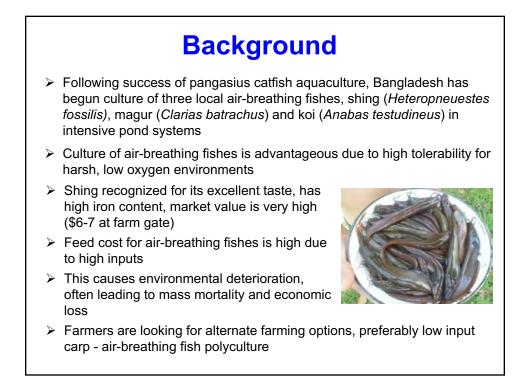
Carp-SIS polyculture with 50% supplementary feeding in periphyton enhancement was best based on fish production and profit. This technology is suitable to rural farmers as it is cost effective and supports family nutrition and income. The technology needs verification trial on farm.

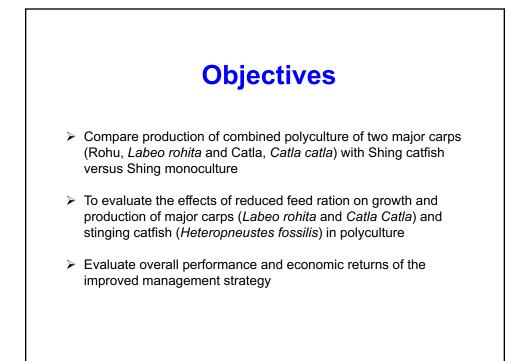
Effects of reduced feeding strategies for combined polyculture of two major carps (Rohu and Catla) with Shingh catfish *Heteropneustes fossils*

Shahroz Mahean Haque *, Imrul Kaiser, Moon Dutta, M. A. Wahab and Russell Borski Dept. of Fisheries Management, Bangladesh Agricultural University, Mymensingh, Bangladesh Shahrozm2002@yahoo.com

Air-breathing fishes provide a significant advantage for pond culture, as they tend to be resilient to harsh conditions, particularly during periods of low-oxygen, which can occur with high temperatures or drought. Currently, production of Shing (*Heteropneustes fossilis*, stinging catfish), a high valued cultivar, is limited to monoculture systems with intensive use of commercial-grade feeds (30-35% crude protein). As feed can comprise up to 60% of total production costs, the current practices for these fish limit participation by small homesteads and therefore comprise a significant impediment to further expansion of this industry. Further, the use of high-levels of feed inputs has led to a persistent deterioration of pond water quality.


An investigation was carried out to determine 1) if addition of Indian major carps (Rohu, *Labeo rohita* and Catla, *Gibelion catla*) alone can provide cost benefits for growout of Shing, and 2) if reducing feed by 50% and 75% from levels typically used by the industry to grow Shing might provide further cost savings in Shing-carp polyculture. The study was carried out for 165 days in ponds at Bangladesh Agricultural University. The experiment was consisted of four treatments (T1, T2, T3


Variables	T1	T2	Т3	T4
	(100%	(100%	(75%	(50%
	Feed)	Feed)	Feed)	Feed)
Shing Net				
Production	623±155	457±99	555±70	614±134
(kg/ha)				
Rohu Net		1971±57	2064±86	1904±93
Production	-	5	2004±80	1904±93 6
(kg/ha)		5	5	0
Catla Net				
Production	-	641±198	661±157	652±220
(kg/ha)				
Total Net		3069±77	3280±85	3171±80
Production	623±155 ^a	3009 ± 77 4 ^b	3280±83 3 ^b	$51/1\pm 80$ 5 ^b
(kg/ha)		4*	5*	5*
Benefit-Cost	0.82	1.55	1.93	2.37


and T4) with four replications each. The stocking density was 200 Shing/decimal, 32 Rohu/decimal and 8 Catla/decimal. All three fish species were stocked in all ponds except in the T1 group, representing the monoculture of Shing as control. Ponds under T_1 and T_2 were fed on full ration (20% - 5% body weight/day), while T₃ received feed at 75% and T₄ at 50% of full ration daily.

Growth and production of fishes did not vary significantly in the different treatments. The survival rate fish did not differ and ranged from 47 to 53% for Shing and > 89% for carps. The net productions of fish in T1, T2, T3 and T4 were 623 ± 155 , 3069 ± 774 , 3280 ± 853 and 3171 ± 805 kg/ha, respectively. Net return was -103,827, 294,485, 442,711 and 542,215 BDT/ha and benefit cost ratio (BCR, total returns/total costs) was 0.82, 1.55, 1.93 and 2.37 in T1, T2, T3 and T4, respectively. T4 showed the best overall FCR, SGR, BCR and fish yield followed by T3. In conclusion, the cost effectiveness of Shing growout can be substantially improved by addition of carps to the pond culture system. Moreover, reducing feed inputs by half provides additional

benefits to Shing-carp polyculture. Based on these studies, farmers have the potential to enhance their income opportunities by incorporating carps and reducing feed inputs in the growout of Shing.

T ₁ 0	Treatr T ₂ 80 (0.8/m ²)	T ₃	T ₄
-	-	, i i i i i i i i i i i i i i i i i i i	
0	80 (0.8/m ²)	$80(0.8/m^2)$	
		00 (0.0/ III ⁻)	80 (0.8/m ²)
0	20 (0.2/m ²)	20 (0.2/m ²)	20 (0.2/m ²)
(5/m ²)	500 (5/m ²)	500 (5/m²)	500 (5/m ²)
0	0	4:1 (N:P)	4:1 (N:P)
.00%	100%	75%	50%
4	4	4	4
	(5/m ²) 0 00%	(5/m²) 500 (5/m²) 0 0 00% 100%	(5/m²) 500 (5/m²) 500 (5/m²) 0 0 4:1 (N:P) 00% 100% 75%

Methods

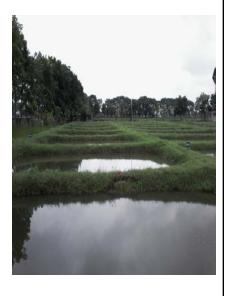
Experimental Site

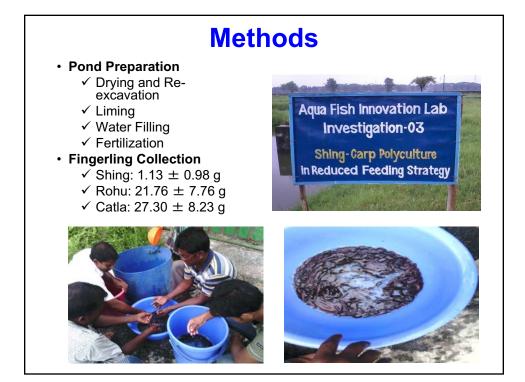
Fisheries Field Laboratory Complex, Bangladesh Agricultural University, Mymensingh

Duration of the Experiment

165 days (30th May, 2014 to 11th November, 2014)

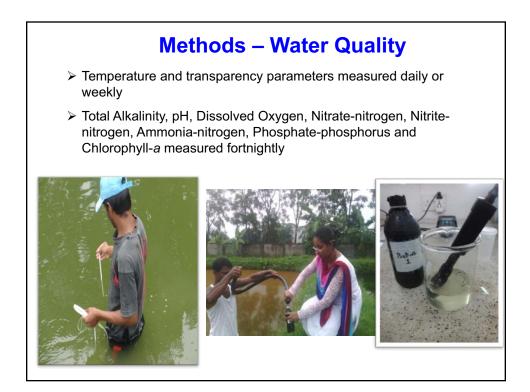
Experimental Species

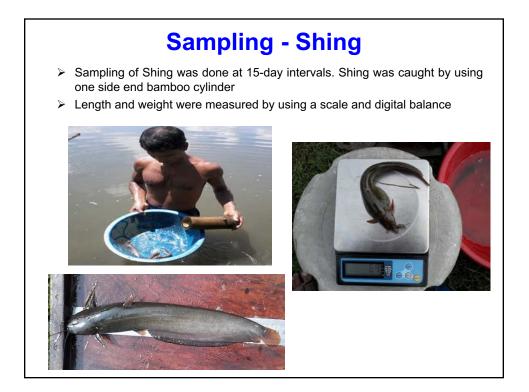

Rohu (*Labeo rohita*), Catla (*Catla catla*) and Shing (*Heteropneustes fossilis*)

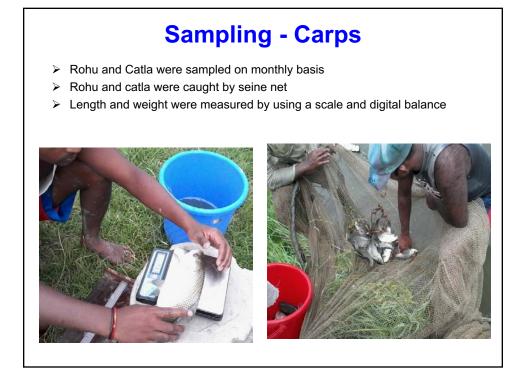

Culture Technique

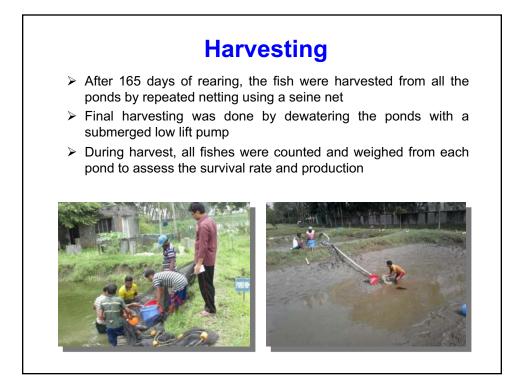

Monoculture and polyculture

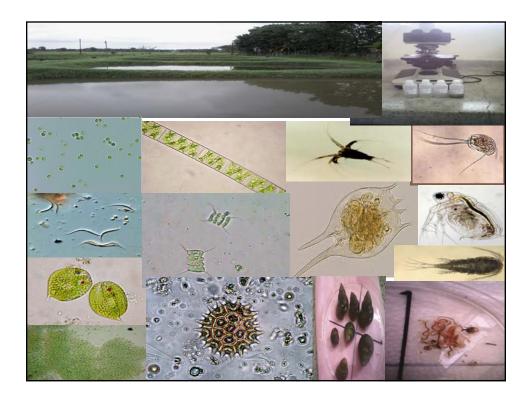
Pond Size

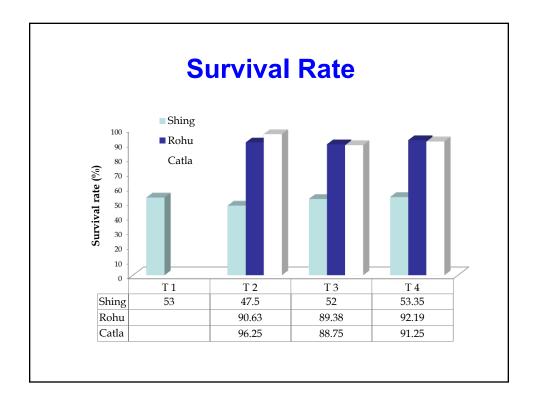

Area - 2.5 decimal, Depth - 1.5 m











Parameter	Treatment 1 Shing Alone 100% Feed	Treatment 2 Shing + Carps 100% Feed	Treatment 3 Shing + Carps 75% Feed + Fertilization	Treatment 4 Shing + Carp 50% Feed + Fertilization
Temperature (°C)	30.31 ± 1.59	30.33 ± 1.43	30.18 ±1.42	30.26 ± 1.44
Transparency (cm)	24.42 ± 14.44	25.31 ± 11.33	25.43 ± 10.90	27.10 ± 10.62
Total Alkalinity (mg/L)	86.61 ± 32.90	95.89 ± 36.96	89.27 ± 37.48	93.57 ± 36.50
рН	7.49 ± 0.46	7.54 ± 0.49	7.51 ± 0.48	7.53 ± 0.50
Dissolved Oxygen (mg/L)	6.31 ± 0.81	6.19 ± 0.85	6.18 ± 0.84	6.30 ± 0.83
Nitrate (mg/L)	$0.08 \pm 0.0^{\circ}$	$0.08 \pm 0.07^{\circ}$	0.25 ± 0.26^{a}	0.16 ± 0.17^{t}
Nitrite (mg/L)	0.08 ± 0.15	0.08 ± 0.13	0.13 ± 0.17	0.10 ± 0.15
Ammonia (mg/L)	0.26 ± 0.23^{a}	0.17 ± 0.14^{a}	0.32 ± 0.43^{ab}	0.48 ± 0.66^{t}
Phosphate (mg/L)	0.68 ± 0.43	0.75 ± 0.49	0.82 ± 0.54	0.66 ± 0.48
Chlorophyll-a (mg/L)	323.67 ± 266.18	243.54 ± 216.44	249.64 ± 223.71	194.63 ± 36.56

Plankton Populations (×10 ³ cells/L ± SD)					
Treatment 1	Treatment 2	Treatment 3	Treatment 4		
71.27 ± 4.67	71.25 ± 3.03	80.72±4.14	82.90 ± 3.89		
108.09 ± 13.34	51.01 ± 3.43	75.76 ± 8.08	57.92 ± 4.44		
27.90 ± 1.77	27.90 ± 1.64	31.58 ± 1.87	30.90 ± 1.65		
16.41 ± 2.73	22.70 ± 2.99	30.21±5.84	41.10 ± 5.44		
3.53 ± 0.64	4.63 ± 0.69	4.98 ± 0.75	5.16±0.66		
232.75 ± 14.8	178.78±7.11	224.70 ± 12.07	217.72±10.76		
13.06 ± 1.40	13±1.41	18.89 ± 2.29	16.69 ± 1.60		
1.35 ± 0.34	1.05 ± 0.24	0.92 ± 0.24	1.14 ± 0.25		
0.48 ± 0.24	0.80 ± 0.27	0.65 ± 0.24	0.90 ± 0.23		
0.94 ± 0.27	0.43 ± 0.13	0.58 ± 0.17	0.87±0.19		
16.07 ± 1.79	16.00 ± 1.59	21.38 ± 2.24	20.21 ± 1.91		
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Treatment 1Treatment 2 71.27 ± 4.67 71.25 ± 3.03 108.09 ± 13.34 51.01 ± 3.43 27.90 ± 1.77 27.90 ± 1.64 16.41 ± 2.73 22.70 ± 2.99 3.53 ± 0.64 4.63 ± 0.69 232.75 ± 14.8 178.78 ± 7.11 13.06 ± 1.40 13 ± 1.41 1.35 ± 0.34 1.05 ± 0.24 0.48 ± 0.24 0.80 ± 0.27 0.94 ± 0.27 0.43 ± 0.13 16.07 ± 1.79 16.00 ± 1.59	Treatment 1Treatment 2Treatment 3 71.27 ± 4.67 71.25 ± 3.03 80.72 ± 4.14 108.09 ± 13.34 51.01 ± 3.43 75.76 ± 8.08 27.90 ± 1.77 27.90 ± 1.64 31.58 ± 1.87 16.41 ± 2.73 22.70 ± 2.99 30.21 ± 5.84 3.53 ± 0.64 4.63 ± 0.69 4.98 ± 0.75 232.75 ± 14.8 178.78 ± 7.11 224.70 ± 12.07 13.06 ± 1.40 13 ± 1.41 18.89 ± 2.29 1.35 ± 0.34 1.05 ± 0.24 0.92 ± 0.24 0.48 ± 0.24 0.80 ± 0.27 0.65 ± 0.24 0.94 ± 0.27 0.43 ± 0.13 0.58 ± 0.17 16.07 ± 1.79 16.00 ± 1.59 21.38 ± 2.24		

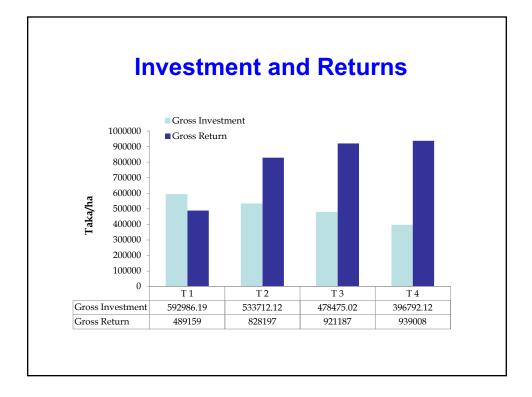
Benthic Organisms Identified (10 ³ cells/L)						
	Treatment 1	Treatment 2	Treatment 3	Treatment 4		
Oligochaeta	125 ± 90	113 ± 46	138 ± 38	90 ± 28		
Chironomidae	356 ± 93	783 ± 114	979 ± 137	1057 ± 288		
Mollusca	61 ± 31	48 ± 23	40 ± 15	70 ± 18		
Unidentified	27 ± 50	80 ±18	83 ± 17	42 ±14		
Total Benthos	570 ± 173 ^a	1025 ± 140 ^b	1239 ±135 ^b	1259 ± 294 ^b		

Production Parameters of Shing						
Variable	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Level of Significance	
Mean Stocking Weight (g)	1.13 ± 0.98	1.13 ± 0.98	1.13 ± 0.98	1.13 ± 0.98	NS	
Mean Harvesting Weight (g)	24.73±3.45	20.62±3.50	22.70±2.34	24.44±5.09	NS	
Mean Weight Gain (g)	23.60 ± 3.45	19.49±3.50	21.57±2.34	23.31±5.09	NS	
Initial Length (cm)	5.53 ± 1.67	5.53 ± 1.67	5.53 ± 1.67	5.53 ± 1.67	NS	
Final Length (cm)	16.08±2.10	15.28±2.12	15.59 ± 2.18	15.99 ± 2.77	NS	
Net Length (cm)	10.55±2.10	9.75±2.12	10.06±2.18	10.46 ± 2.77	NS	
Survival Rate (%)	53.00 ± 6.36	47.50±5.02	52.00 ± 2.44	53.35±2.00	NS	
SGR (%)	1.83 ± 0.08	1.72±0.10	1.78±0.06	1.82 ± 0.13	NS	
Gross Production (kg/ha)	652.21 ± 158.42	483.65±100.90	583.71±70.80	644.23±134.30	NS	
Net Production (kg/ha)	622.63±155.25	457.14±99.46	554.68±69.99	614.44±134.09	NS	

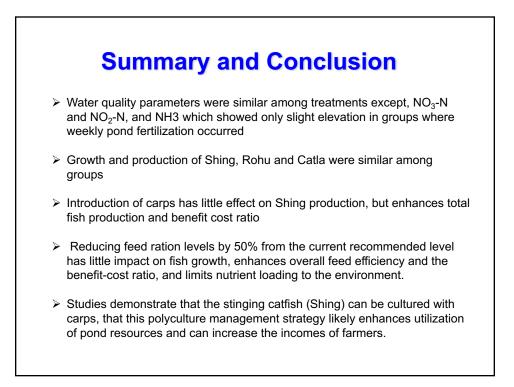
٦

Γ

Production Parameters of Catla


Variable	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Level of Significance
Mean Stocking Weight (g)	-	27.30± 8.23	27.30 ± 8.23	27.30 ± 8.23	NS
Mean Harvesting Height (g)	-	368.60 ± 117.88	402.08±57.89	389.40 ± 119.54	NS
Mean Weight Gain (g)	-	341.30 ± 117.88	374.78±57.89	362.10 ± 119.54	NS
Initial Length (cm)	-	13.05 ± 1.36	13.05 ± 1.36	13.05±1.36	NS
Final Length (cm)	-	29.63±2.24	30.46±1.58	29.69±3.48	NS
Net Length (cm)	-	16.58 ± 2.24	17.41±1.58	16.64 ± 3.48	NS
Survival Rate (%)	-	96.25±3.50	88.75±10.15	91.25±4.79	NS
SGR (%)	-	1.53 ± 0.20	1.60 ± 0.09	1.56 ± 0.18	NS
Gross Production (kg/ha)	-	692.84±196.38	708.89±163.02	701.48±220.48	NS
Net Production (kg/ha)	-	640.91±197.96	661.01±157.20	652.26±220.21	NS

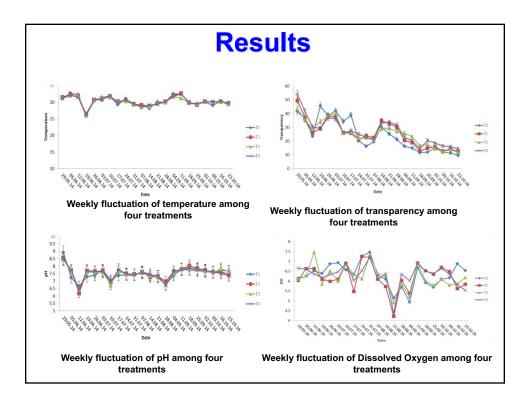
Production Parameters of Rohu						
Variable	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Level of Significance	
Mean Stocking Weight (g)	-	21.76± 7.76	21.76± 7.76	21.76± 7.76	NS	
Mean Harvesting Weight (g)	-	304.81±106.6	309.63±103.26	279.92±119.29	NS	
Mean Weight Gain (g)	-	283.05±106.61	287.87±103.26	258.16±119.29	NS	
Initial Length (cm)	-	12.48±1.40	12.48 ± 1.40	12.48±1.40	NS	
Final Length (cm)	-	28.95 ± 2.54	29.58 ± 2.08	28.02 ± 3.34	NS	
Net Length (cm)	-	16.47 ± 2.54	17.1±2.08	15.54 ± 3.34	NS	
Survival Rate (%)	-	90.63±8.92	89.38±8.75	92.19±3.73	NS	
SGR (%)	-	1.54 ± 0.22	1.55 ± 0.21	1.48 ± 0.27	NS	
Gross Production (kg/ha)	-	2126.67±561.52	2218.06±874.12	2062.45±941.87	NS	
Net Production (kg/ha)	-	1970.80±575.10	2064.34±863.13	1903.90±936.21	NS	

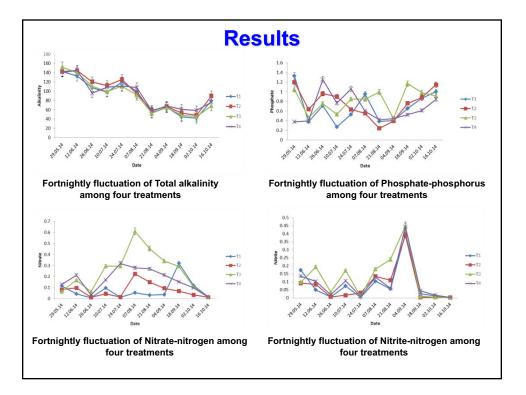

Г

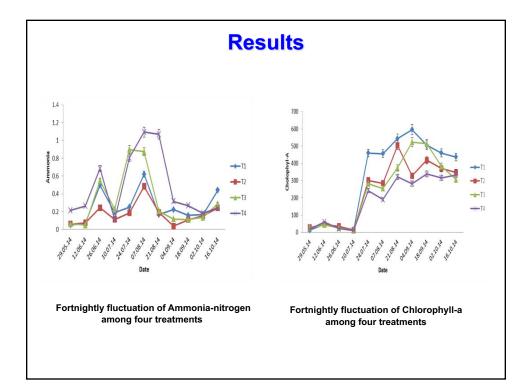
Combined Production of All Species T1 (100% Feed) T4 (50% Feed) Т2 Т3 Variables (100% Feed) (75% Feed) Shing Net Production (kg/ha) 623 ± 155 457 ± 99 555±70 614 ± 134 4004 1 000 0004 1 000 4074

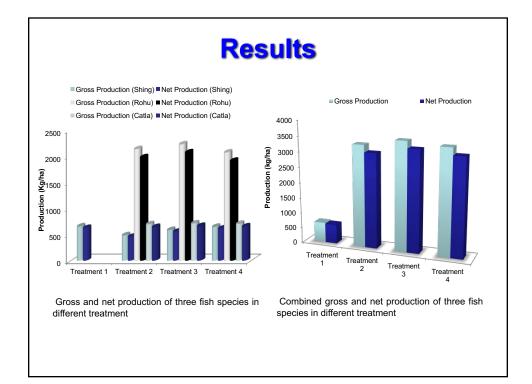
Rohu Net Production(kg/ha)	-	1971 ± 575	2064 ± 863	1904 ± 936
Catla Net Production (kg/ha)	-	641 ± 198	661 ± 157	652±220
Total Net Production (kg/ha)	623 ± 155^{a}	3069±774 ^b	3280±853 ^b	3171±805 ^b

Economic Analyses					
Items		Level of Significanc			
	T ₁	T ₂	T ₃	T_4	е
Financial Input					
Lime	2470.00	2470.00	2470.00	2470.00	NS
Urea	1033.45 ª	1033.45 ª	20659.08 ^b	20659.08 ^b	**
TSP	729.14 ª	729.14 ^a	14582.88 ^b	14582.88 ^b	**
Shing	61750.00	61750.00	61750.00	61750.00	NS
Rohu	-	39520.00	39520.00	39520.00	NS
Catla	-	19760.00	19760.00	19760.00	NS
Feed	517003.60 d	398449.53°	309733.06 ^b	228050.16 ª	**
Labor, Other	10000.00	10000.00	10000.00	10000.00	NS
Total Cost	592986.19 ^d	533712.12 ^b	478475.02 °	396792.12 ª	**
Financial Return					
Shing	489158.80	362738.03	437782.80	483169.05	NS
Rohu	-	361533.90	377070.20	350616.50	NS
Catla	-	103925.25	106333.50	105222.00	NS
Total Return	489158.8ª	828197.18 ^b	921186.5 ^b	939007.55 ^b	**
Net Return	-103827.39 ª	294484.88 ^b	442711.48 ^b	542215.43 ^b	**
BCR	0.82 a	1.55 ^b	1.93 ^{bc}	2.37 °	**








Concluding Remarks

Reductions in feed 50% and overhead costs, combined with mixed-trophic level nutrient utilization, may make semi-intensive culture of shing catfish more feasible for greater adoption among farmers while also mitigating environmental impacts associated with nutrient loading.

Growth performance outcomes for Study. Values are mean \pm SD.
Values with different letters are significantly different (P < 0.05). NA = not
applicable

	Treatment 1	Treatment 2	Treatment 3	Treatme
Shing (Heteropneustesfossilis)				
Stocking Weight (g)	1.13 ± 0.98	1.13 ± 0.98	1.13 ± 0.98	1.13 ± 0
Harvesting Weight (g)	24.73±3.45	20.62±3.50	22.70±2.34	24.44±5
Weight Gain (g)	23.60±3.45	19.49±3.50	21.57±2.34	23.31±5
Initial Length (cm)	5.53±1.67	5.53±1.67	5.53±1.67	5.53±1
Final Length (cm)	16.08±2.10	15.28±2.12	15.59±2.18	15.99±2
Net Length (cm)	10.55±2.10	9.75±2.12	10.06±2.18	10.46±2
Survival Rate (%)	53.00±6.36	47.50±5.02	52.00±2.44	53.35±2
Specific Growth Rate, SGR (%)	1.83±0.08	1.72±0.10	1.78±0.06	1.82±0
Gross Production (kg/ha)	652.21±158.42	483.65±100.90	583.71±70.80	644.23±1
Net Production (kg/ha)	622.63±155.25	457.14±99.46	554.68±69.99	614.44±1
Rohu (Labeorohita)				
Stocking Weight (g)	NA	21.76±7.76	21.76± 7.76	21.76± 1
Harvesting Weight (g)	NA	304.81±106.6	309.63±103.26	279.92±1
Weight Gain (g)	NA	283.05±106.61	287.87±103.26	258.16±1
Initial Length (cm)	NA	12.48±1.40	12.48±1.40	12.48±1
Final Length (cm)	NA	28.95±2.54	29.58±2.08	28.02±3
Net Length (cm)	NA	16.47±2.54	17.1±2.08	15.54±3
Survival Rate (%)	NA	90.63±8.92	89.38±8.75	92.19±3
Specific Growth Rate, SGR (%)	NA	1.54±0.22	1.55±0.21	1.48±0
Gross Production (kg/ha)	NA	2126.67±561.52	2218.06±874.12	2062.45±9
Net Production (kg/ha)	NA	1970.80±575.10	2064.34±863.13	1903.90±9
Catla (Catlacatla)				
Stocking Weight (g)	NA	27.30± 8.23	27.30 ± 8.23	27.30 ±
Harvesting Weight (g)	NA	368.60±117.88	402.08±57.89	389.40±1
Weight Gain (g)	NA	341.30±117.88	374.78±57.89	362.10±1

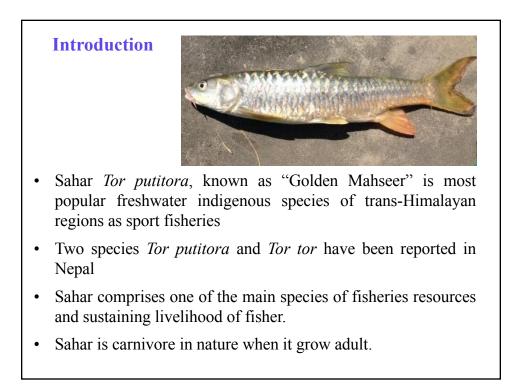
Results Combined Net production						
Variable	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Level of Significanc e	
Gross Production (kg/ha)	652.21±158.42ª	3303.16±825.23 b	3510.66±904.85 ь	3408.16±853.72 ^b	**	
Net Production (kg/ha)	622.63±155.25ª	3068.85±774.45 ^b	3280.04±852.98 ь	3170.60±805.46 ^b	**	

Spawning response of sahar Tor putitora in Terai region of Nepal

Subash K. Jha, Jay D. Bista*, Narayan P. Pandit, Madhav K. Shrestha, and James S. Diana Department of Aquaculture and Fisheries Agriculture and Forestry University, Rampur, Chitwan, Nepal jdbista@gmail.com

Sahar (Tor putitora) is a high value indigenous riverine species of Nepal which is declining in its natural habitat and has been declared an endangered species. Limited seed production of this species in the temperate region has restricted for expansion in culture as well as rehabilitation in natural waters. An experiment was conducted at the Department of Aquaculture and Fisheries, Agriculture and Forestry University, Rampur, Chitwan during August 2014 to April 2015 to explore and assess the breeding performance of sahar in the Terai region of Nepal, which has a subtropical climate. Twenty eight male (0.5-1.5 kg) and 35 female (0.8-2.5 kg) brood fish were reared in ponds at 1000 kg/ha and provided 35% supplementary feed. Maturity was observed by sampling fish and applying pressure to the abdomen to express gonads biweekly during offseason; this frequency was increased to every third day as breeding season approached. One female sahar of 3-5 years old was ready for breeding in March when the water temperature was 23.3-25.2 °C. In the same month, another female responded to injection of inducing hormone (ovaprim) at the rate of 0.5 ml/kg when the temperature was 25.3-28.7 °C. Males about 1-2 years old were expressed milt in almost all months during experiment. Ova from mature females were obtained by simple hand stripping method and fertilized with milt collected from males manually. The fertilized eggs were incubated in Atkin hatching trays. Survival and growth of the fry were high (Table 1) and maturation details were similar to fish spawned under temperate conditions. This study demonstrated that natural and induced breeding and fry rearing is possible in the Terai region of Nepal. However, further studies on synchronization of breeding time and mass seed production are recommended.

Description	Natural breeding	Induced breeding
Date	9 March 2015	27 March 2015
Temperature (°C)	23.3 - 25.2	25.3-28.7
Female body wt (kg)	1.2	1.3
Male body wt (kg)	0.65 and 0.80	0.72 and 0.87
Total egg spawned	2585	4738
Egg number per kg body wt	2119	3746
Ovulated eggs per g	94	103
Fertilization rate (%)	98	99
Incubation period (hour)	96-104	80-88
Hatching rate (%)	95	97
Hatchling survival (%)	81	90
Yolk sac absorption period (days)	6	5
Time to swim up fry (days)	17	17

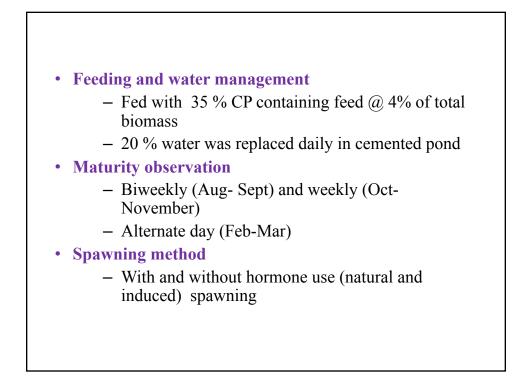

TABLE 1. Breeding performance of sahar with and without using inducing hormone

Subash K. Jha, Jay D. Bista*, Narayan P. Pandit, Madhav K. Shrestha, and James S. Diana

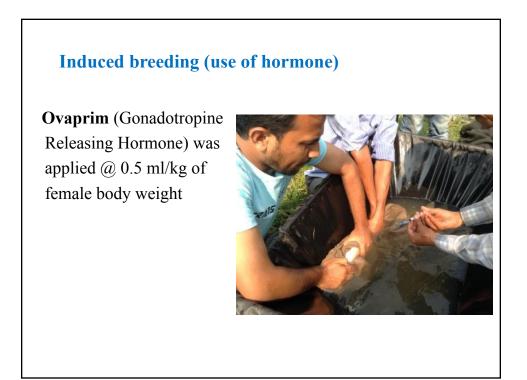
Department of Aquaculture, Agriculture and Forestry University, Nepal

F

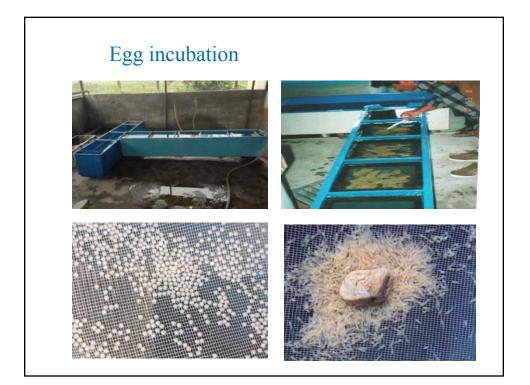
- This fish is economically important high value indigenous species due to its massive size and high price in the Nepalese market.
- Despite their importance, their biological diversity is being threatened by various anthropogenic factors.
- It is long migratory, migrate upward to small rivers for natural spawning and shows intermittent spawning behavior.
- Sahar is still taken in capture fisheries in lakes and rivers, but no commercial cultivation has begun.
- At present attempts to culture and conserve *Tor spp*. has been initiated in most of trans-Himalayan countries.



Objective General objective • To assess the breeding performance of Sahar in Terai region of Nepal • **Specific objectives** • To assess the breeding season of sahar in Terai • To evaluate the breeding performance of sahar with and without inducement of hormone • To assess the growth and survival rate of fry in tropical climate

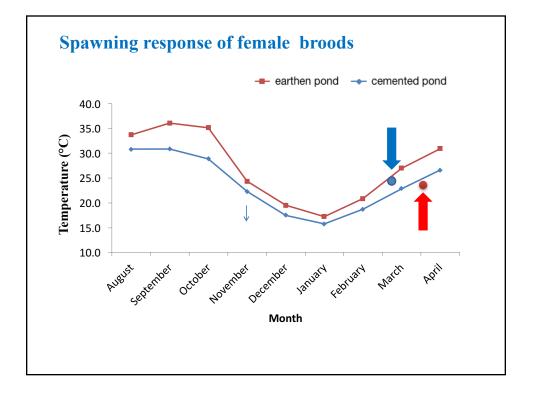

Methodology

- Experimental setup
 - at aquaculture farm (AFU) from
 - 1st August 2014 to 30th April 2015
- Brood fish collection
 - 33 broods (28 male and 5 female) aquaculture farm (AFU)
 - 30 female brood from FRC, Pokhara
- Brood fish rearing
 - cemented pond (25 m²)
 - earthen pond (400 m²)
 - stone pitched pond (250 m²)
- Stocking rate 1000 kg/ha



Relative fecundity (eggs/kg) =
$$\frac{\text{number of eggs (estimated)}}{\text{weight of female , kg}} \times 1000$$

Fertilization rate (%) = $\frac{\text{Number of fertilized eggs}}{\text{Total number of eggs}} \times 100$
Hatching rate (%) = $\frac{\text{Number of hatchlings}}{\text{Total number of fertilized eggs}} \times 100$
Survival rate (%) = $\frac{\text{Number of fry harvested}}{\text{Number of larvae stocked}} \times 100$



- Fry stocking
 - Sahar fry of 0.073-0.077 g body weight were stocked at 200 heads/m² in small happas (1m²)
- Feed and feeding of fry
 - 35% crude protein containing commercial and farm made feed fed thrice /day at the rate 5 % of total mass.
- Experiment was conducted for 40 days
- Sampling was taken -10 days interval to measure the growth and survival %

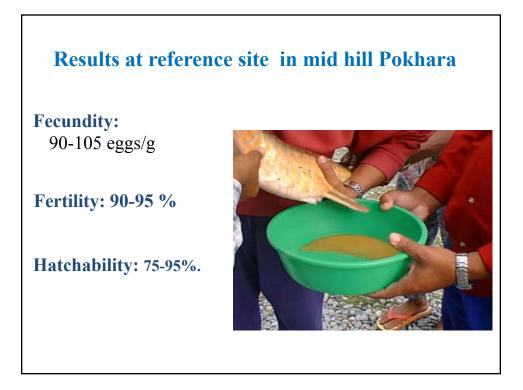
Daily growth rate $(g/f) = \frac{\text{Mean final weight }(g) - \text{mean initial weight }(g)}{\text{culture period}(\text{days})}$ Specific growth rate $(\%/\text{day}) = \frac{\text{Mean}(\ln)\text{final wt. }(g) - \text{Mean}(\ln)\text{initial wt. }(g)}{\text{culture period}(\text{days})} \ge 100$ Survival rate $(\%) = \frac{\text{Number of fry harvested}}{\text{Number of larvae stocked}} \ge 100$

S.N	Description	%	
1	Crude Protein	35	
2	Crude Fat	9	
3	Ash	7	
4	Fiber	8	
5	NFEE*	31	
6	Moisture	10	
* Nitrogen fr	ee ether extract		

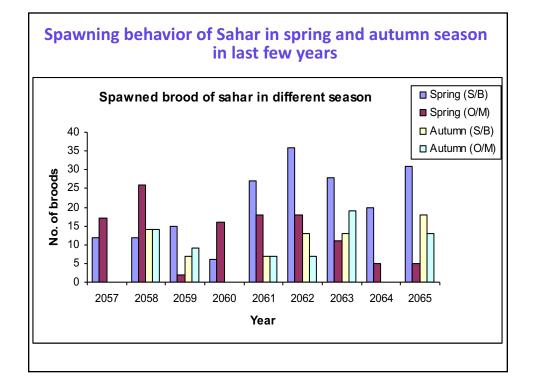
Result of Matur	rity observat	ion in diff	erent month	
Date	Over matured	Spawned	Temperature (°C)	
21 st November 2014	1		21.2-23.0	
24 th November 2014	1		19.7-22.8	
8 th December 2014	1		18.2-21.2	
21st February 2015	1		19.1-21.3	
24 th February 2015	2		19.4-22.0	
27th February 2015	1		20.6-22.8	
4 th March 2015	2		22.5-26.0	
7 th March 2015	1		22.2-25.4	
9 th March 2015	1	1	23.3-25.2	
27 th March 2015		1	25.3-28.7	

Description	Natural	Induced
Description Date	9 th March 2015	
	,	
Temperature (°C)	23.3 - 25.2	25.3-28.7
Female body wt (kg)	1.22	1.27
Male body wt (kg)	0.64, 0.80	0.72, 0.86
Total egg number	2585	4738
Egg per kg body wt	2119	3746

Breeding performance with and without inducing hormone


Description	Natural	Induced
Ovulated eggs per g	94	103
Fertilization rate (%)	98	99
Incubation period (hour)	96-104	80-88
Hatching rate (%)	95	97
Hatchling survival (%)	81	90
Yolk sac absorption period (Days)	6	5
Time to free swimming fry (Days)	17	17

Mean and Range of Egg diameter, length and weight of larvae


Parameters	Natural	Induced
Maan diamatar of agg (mm)	2.9±0.2	3.1±0.3
Mean diameter of egg (mm)	(2.8-3.5)	(2.8-3.3)
Mean weight of egg (mg)	12.37±0.80	12.69±0.78
Weall weight of egg (ling)	(11.57-13.17)	(11.97-13.47)
Mean length of larvae (mm)	9.4±1.2	8.9±0.7
Weall length of farvae (fillin)	(8.2-10.6)	(8.2-9.6)
Mean weight of larvae (mg)	13.01±0.53	13.19±0.49
weight of latvae (ilig)	(12.48-13.54)	(12.70-13.68)

Parameters	Commercial	Farm made	
Initial wt. (mg)	76.47±7.65 ^a	71.00±3.38 ^a	
Final wt. (mg)	252.11±40.82ª	330.88±39.49	
SGR (%/day)	2.97±0.61ª	3.84±0.25ª	
DWG (mg/fish/day)	4.39±1.17 ^a	6.50±0.94ª	
Survival (%)	98.6±2.31ª	98.0±1.80ª	
AFCR	1.7±0.2ª	1.2±0.1 ^b	

Stage	Temperature (°C)	DO (mg/L)	рН
Brood rearing	15.5-32.8	3.5-7.2	7.3
Spawning	23.3 -25.2 25.3-28.7	4.5	7.2
Egg incubation	21.0-25.8 24.0-27	6.6-7.0	7.3-7.4
Fry Rearing pond	33.5-33.7	4.8-6.0	7.6

Description	Sept-Oct 2013	Feb-Mar 2014
Female, No.	100	100
Responded female, No. (%)	60 (60%)	88 (88%)
Normally spawned brood (%)	10 (10%)	46 (46%)
Over matured (%)	50 (50%)	42 (42%)
Not spawned (%)	40 (40%)	12 (12%)
Post spawning mortality (%)	0%	0%

Month	Hill (temperate)	Terai (tropical)
April	3.6±1.2 ^a	3.6±0.74 ª
May	6.2±2.8 ^a	10.2±1.8 ^b
June	18.7±4.8 ^a	24.6±3.9 b
July	18.8±6.5 ª	29.7±5.5 ^b
Aug	27.8±6.5 ^a	38.9±5.6 ^b
Sep	31.6±5.9 ^a	50.6±6.3 ^b
Oct	39.0±5.8 ^a	60.8±10.4 ^b
Net weight gain	32.8	50.6
Growth rate g/day	0.18	0.28

Different superscripted letters are sig. different (P<0.05) within row

Sahar in Cultured condition

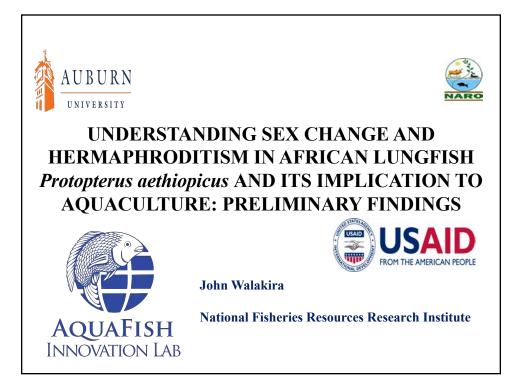
- Tolerate wider range of temperature (13-35°C) without any adverse effect on survivability and growth.
- Survive well in all aquaculture environment (pond, raceway and cages).
- Accept artificial feed as an active feeder.
- Prefer cool and clean water for gonad development.
- Require higher level of dissolved oxygen (DO) in pond condition.

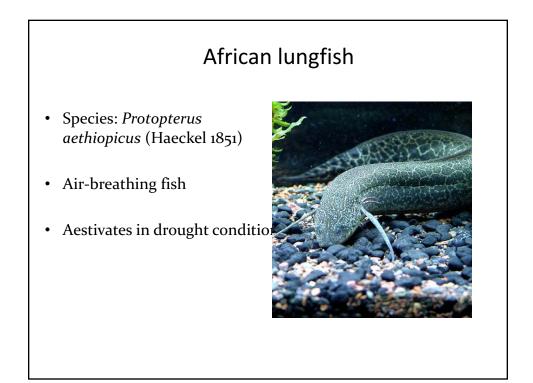
Reproductive behavior of Sahar

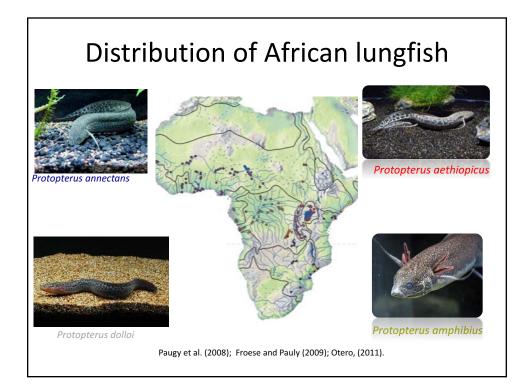
- Male get maturity within one year, though the size of fish even 50-100 gm.
- Female fish get maturity at the age of 3^+ years (> 700 g).
- The mature broods get over maturity within very short time (1-2days)
- No hormone injection was applied for spawning in previous study at reference site in mid hill (temperate region)
- But in this study female responded by inducing hormone.

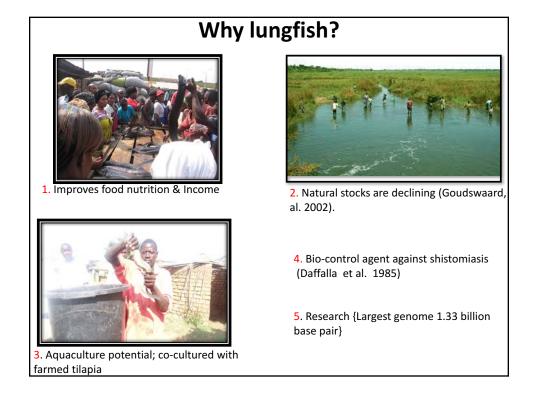
Conclusion and Recommendation

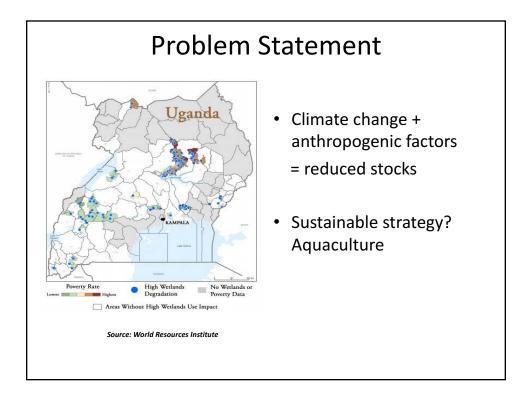
- Pond reared Sahar breed twice in a year in two distinct season, Spring (February-March) and Autumn (September October) and spring season which is more favorable in Nepal.
- But in natural waters it spawn during monsoon when river and rivulets are fool of flood.
- Higher spawning rate can be achieved by determining the optimum stripping time by frequent checking of female fish or by inducing hormone to avoid over maturity.
- Mass scale seed production Technology need to be develop for giving out in private hatcheries.

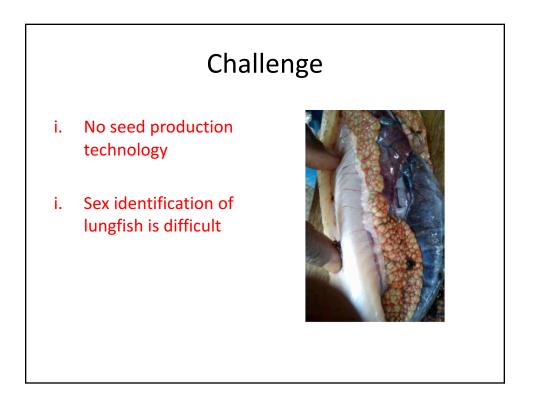





Understanding sex change and hermaphroditism in African lungfish *Protopterus aethiopicus* and its implication to aquaculture: Preliminary findings


John Walakira, John Kiburara, Arkanjelo Idrifua, Joseph Molnar, Eugrance Ganda, Godfrey Kityo, Cassias Aruho National Fisheries Resources Research Institute, Uganda. Email: johnwalakira2003@vahoo.co.uk


Development of sustainable aquaculture technologies for production of African lungfish seed is still a challenge attributed to knowledge gap in its reproductive development. Its successful culture will improve household nutrition, food security and income in Uganda. To build on existing knowledge the reproductive development of 578 feral *P. aethiopicus* collected from Lakes Wamala and Bisina was investigated to obtain data for its future breeding program. The study revealed a possible sex change and hermophroditism in *P. aethiopicus* specimens based on histological analysis of gonadal samples from fish ranging 4 to 6600g. Information on naturally occurring sex change or hermaphroditism in African lungfish will greatly contribute to our understanding of factors that determine its sex, and subsequently towards development of appropriate spawning techniques for mass seed production.



Objective

Overall objective: Develop sustainable seed production technology for African Lungfish (*Protopterus aethiopicus*) to improve livelihoods & nutrition for vulnerable communities in Uganda

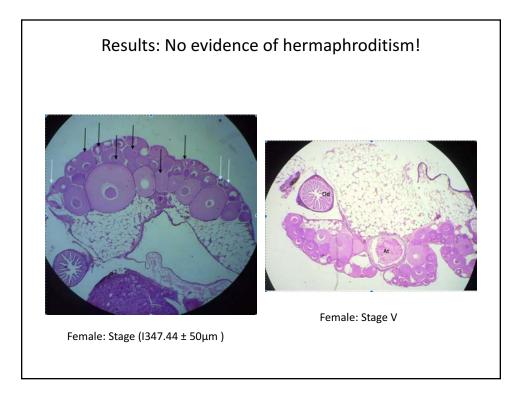
Specific objectives:

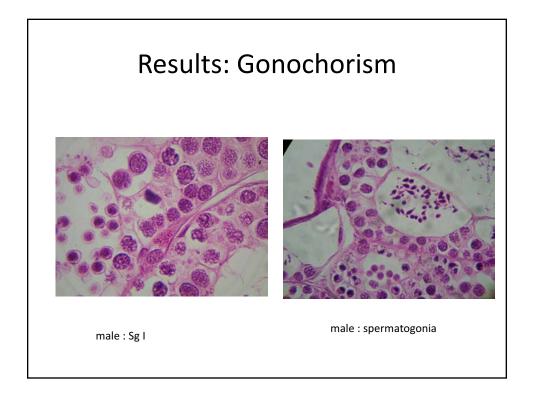
Objective 1: Understand the reproductive biology of feral African lungfish.

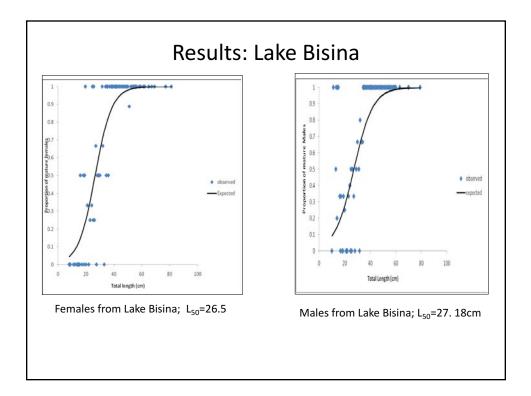
Objective 2: Develop a tool for sex identification of lungfish

Methods & materials

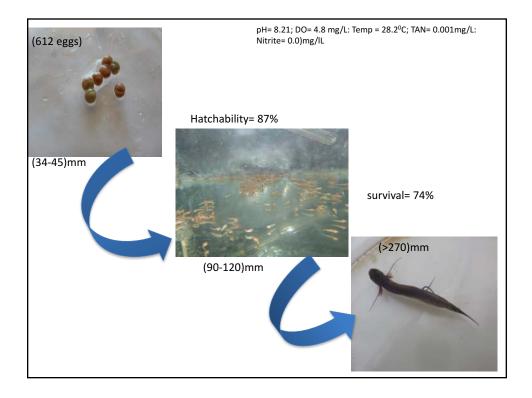
Study 1

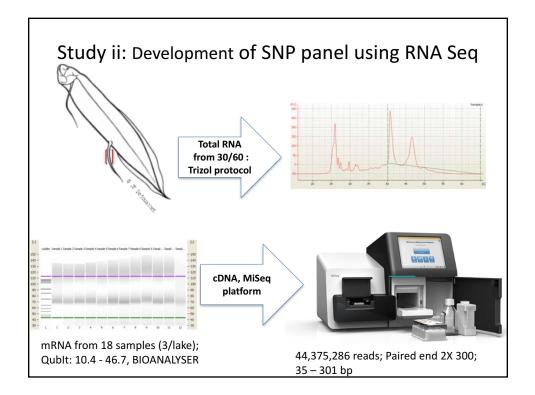

Feral samples collected from Lakes Bisina (*N=341*) and Wamala (*N=263*) from Nov 15-Feb 16,

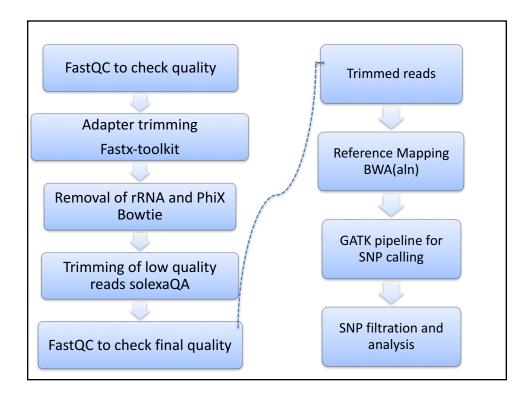

- i) Histological analysis to verify the gonad developmental stage.
- Determine Length at maturity using non-linear two-parameter model (Booth 1997)


 $P=1/(1+e)^{-(\alpha+\beta^*L)}$

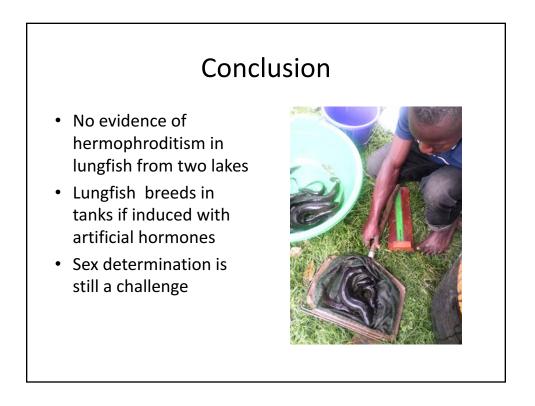
- α and β = regression coefficients
 L = length of 50% maturity fish
- iii) Sex ratio




Lake	Males- TL	Females-TL	Sex Ratios
	(cm)	(cm)	Females: males
Wamala	20.3	24.5	0.863: 1*
Bisina	27.2	26.5	1.86: 1**


Study II: Breeding trials

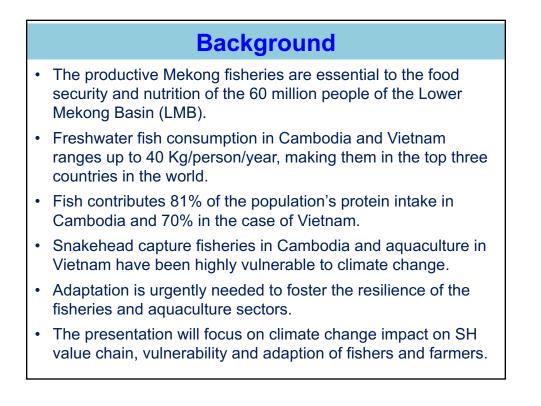
HORMONE USED	MASS	40% VOLUME/mls 1 st dose	60% VOLUME/mls 2 nd dose	TOTAL VOLUME/mls	RESPONSE
LHRHA CONC. 300 <i>u</i> g/Kg	187	0.24	0.36	0.6	None
	221	0.24	0.36	0.6	None
	354	0.32	0.48	0.8	Active
	361	0.32	0.48	0.8	Active
	480	0.4	0.6	1.0	Active
	460	0.4	0.6	1.0	Active



Lakes	total SNPs	Private SNPs	shared SNPs
isina	200106	46365	73905
dward	118554	4217	130538
George	118924	4796	68159
(yoga	99537	3600	33676
lawampasa	130672	5889	17595
Vamala	153450	9038	9851
otal	821,243		

Generating sustainable technologies

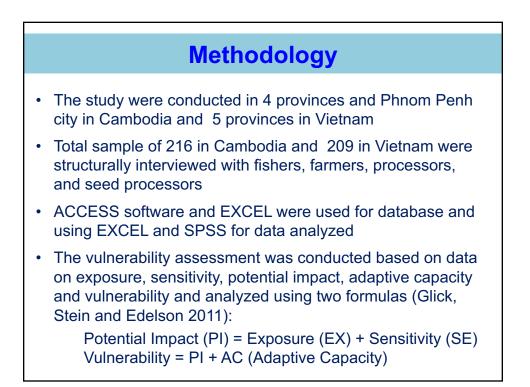
Page 1 of 3

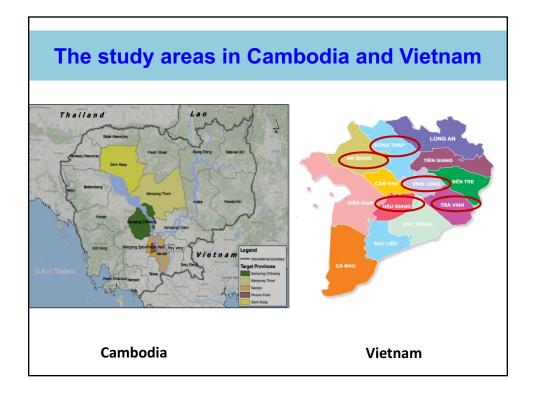

AquaFish Technical Session 3 Innovations in Smallholder Aquaculture Technology: AquaFish Research on Snakehead

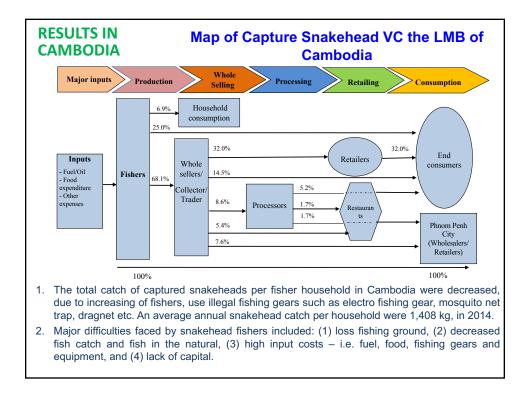
Impacts of climate change on snakehead value chains in the Lower Mekong Basin of Cambodia and Vietnam

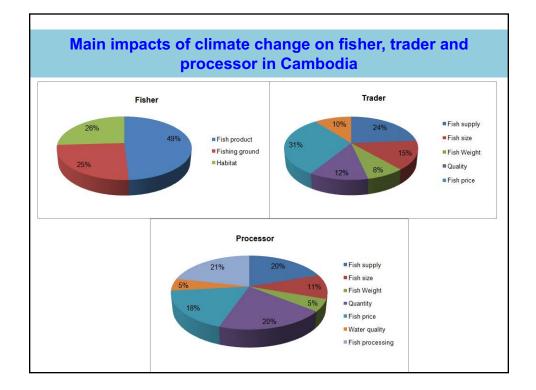
Navy, H., Minh, T. H. and Pomeroy, R.S ¹Inland Fisheries and Research Development Institute, Phnom Penh, Cambodia ² College of Aquaculture and Fisheries, Can Tho University, Cantho, Vietnam ³ University of Connecticut-Avery Point, Department of Agricultural and Resource Economics, Goton, Connecticut, USA e-mail: hapnavy@yahoo.com and thminh@ctu.vn

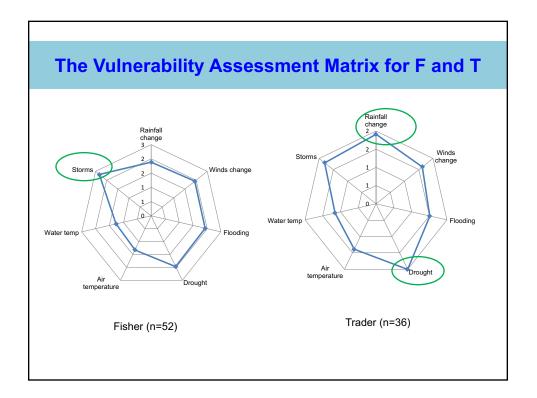
Many capture fisheries resources in the Lower Mekong basin of Cambodia and Vietnam have been largely overexploited resulting in the development of aquaculture, especially for snakehead. The snakehead value chain is affected by climate and non-climate factors (such as water development - hydropower dam development) related drivers of change, including increased temperatures, changes in rainfall patterns, changes in the hydrological regime (water levels, duration of flooding, timing of flooding), and more. This study examined the vulnerability of snakehead capture and culture value chains in the Lower Mekong Basin of Cambodia and Vietnam. One of the most frequently cited climate impacts is changing rainfall patterns resulting in severe storms and flooding. The study identified impacts and proposed adaptation strategies for various actors in the value chain. Options to assist the fish farmers and fishers across the value chain include: assisting the farmers in understanding and preparing for the impacts of climate change on their business; the actors in the value chain need to begin working together; the Government should consider reviewing the ban on snakehead aquaculture in order to provide an alternative livelihood to households as an adaptation strategy; and the Government should restrict the law on fisheries, enhance law enforcement and impose heavy fine on illegal fishing in order to prevent the mass destruction of these two fish species.

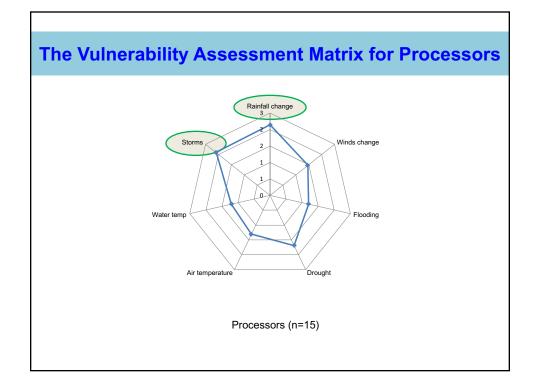


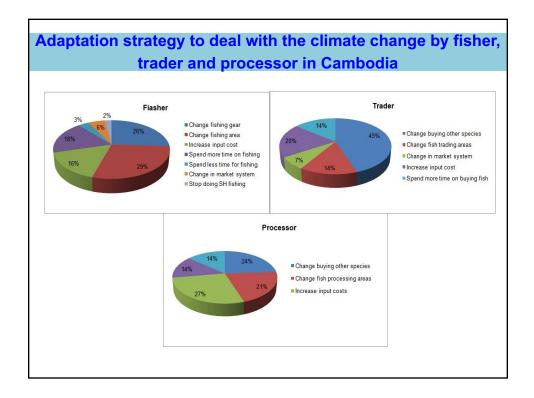

Objectives

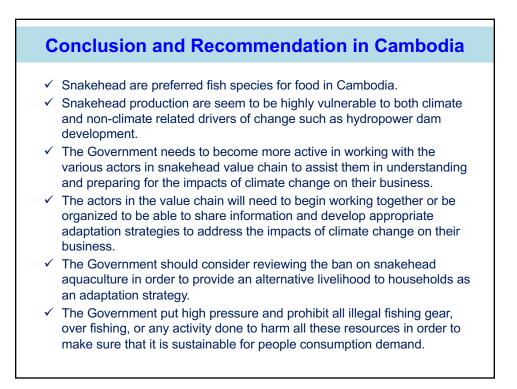

General Objective: To assess the vulnerability of the Snakehead capture and culture in the LMB of Cambodia and Vietnam, to predict impacts from climate change, using concept of the value chain (VC) on fish market and trade.

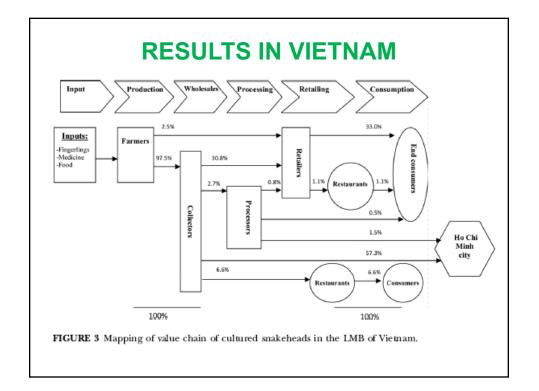

Specific Objectives:

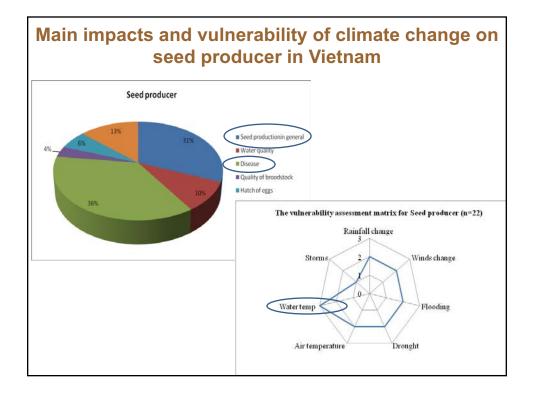

- To identify current and pathways of climate change and corresponding adaptation strategies in Snakehead VC;
- To provide recommendations in order to contribute to sustainable development of aquaculture and fisheries in the LMB.

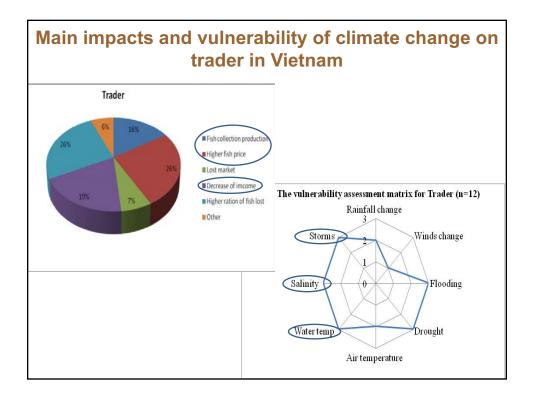


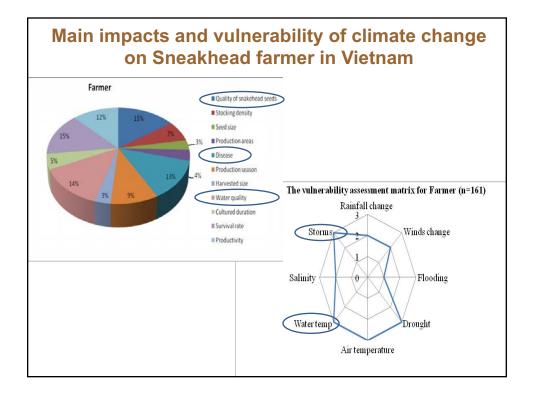


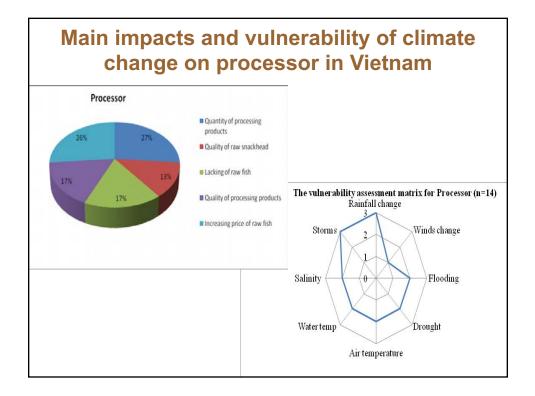


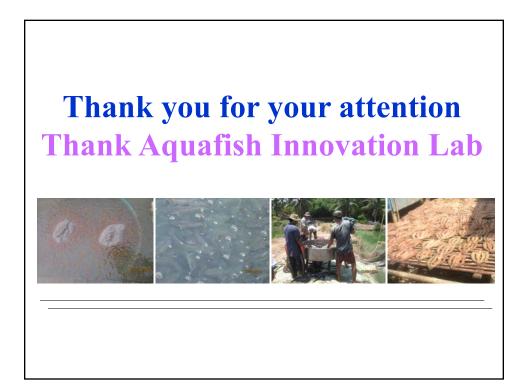



Adaptation Strategies of SH Value Chain Actors in Cambodia


- ✓ Fishers: change fishing gears, change fishing areas, increase input cost, spend more time on fishing, and stop doing snakehead fishing
- Traders: buy other species, change to new areas where trading is easier and more profitable, increase input cost, and spend more time buying fish
- ✓ Processors: buy other species, change to new areas where fish processing is easier and more profitable, increase input cost, and spend more time buying fish.





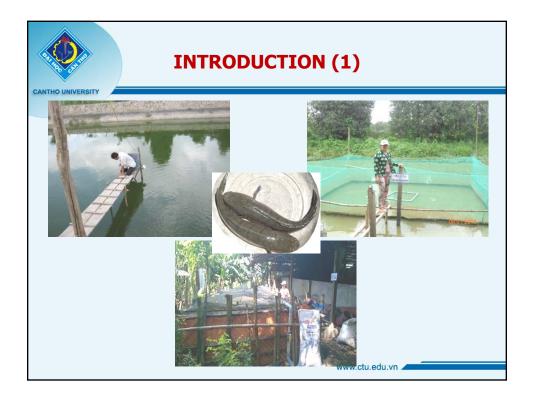

Adaptation Strategies of SH Value Chain Actors in Vietnam

- Adaptation: changing in seed production scale, temporary stop seed producing, selecting better broodstocks and applying modern technology in seed production.
- Farmers: Changing to other culture model, stopping or changing culture technique, changing culture scale and increasing input cost in farming.
- Trader: choosing other fish species business, buying raw fish from other region, increasing input costs,
- ✓ Processors: buy other species, change to new areas where fish processing is easier and more profitable, increase input cost, and spend more time buying fish.

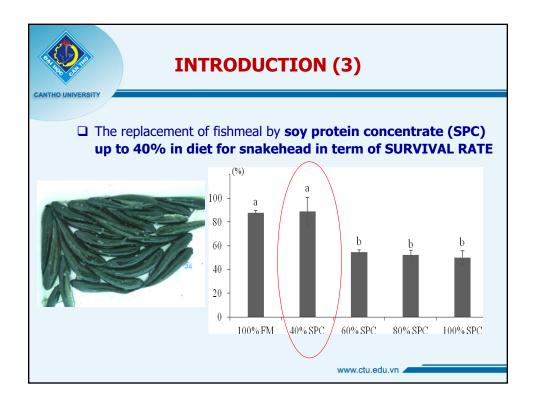
Conclusion and Recommendation in Vietnam

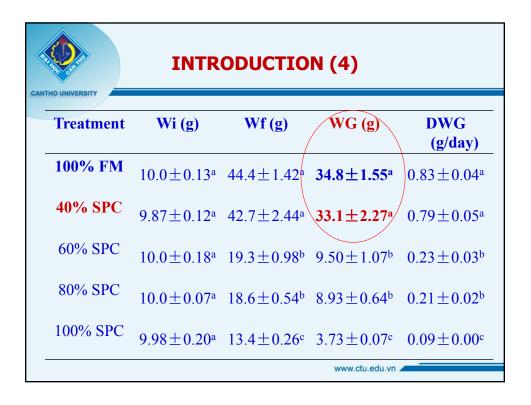
- End consumer and Ho Chi Minh markets are the major markets of sneakhead value chain in Vietnam;
- Rainfall change patterns impact negatively in sneakhead seed production and trading. Drought impact negatively to seed production, farming and trading.
- Water temperature (Temp.) is major vulnerable in seed production; storm, water temperature and drought are main vulnerable factors in sneakhead culture; storm, salinity, water temp., flooding and drought are vulnerable events to trading; storm and rainfall are vulnerable events in fish processing.

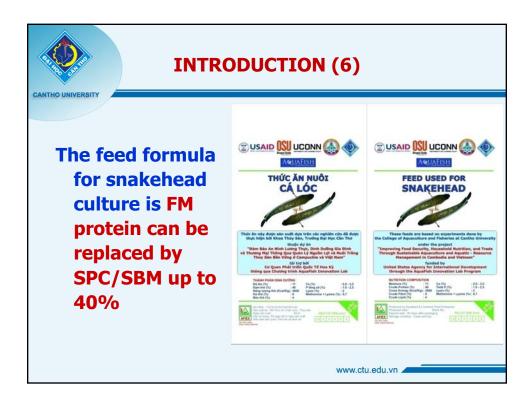
Evaluating growth performance and immune responses of snakehead *Channa striata* by feeding plant protein diets supplemented with mannan oligosaccharide

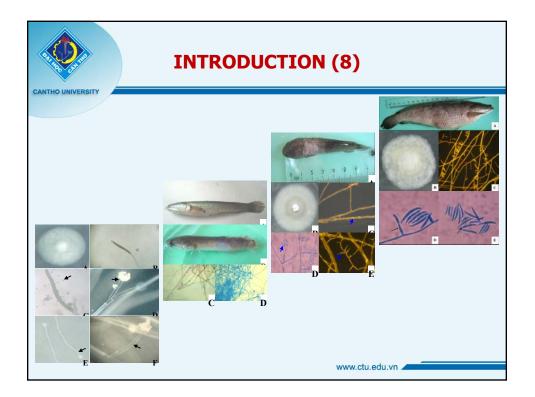

Thi Thanh Hien Tran , Pham Minh Duc*, Tran Minh Phu, Tran Le Cam Tu, Dang Thuy Mai Thy, and Bengtson David ¹College of Aquaculture and Fisheries, Can Tho University, Vietnam ²Rhode Island University, USA <u>ttthien@ctu.edu.vn</u>

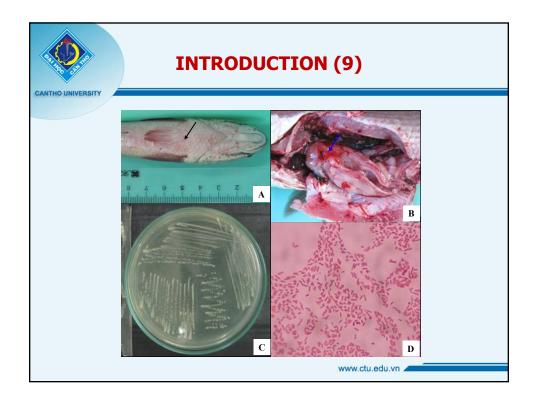
The objective of this study was to evaluate the effectiveness on growth performance and immune responses of mannan oligosaccharide (MO) supplementation in both soybean meal (SBM) and soy protein concentrate (SPC) formulated feeds for snakehead (*C. striata*). The experiment included three feed groups, one using fishmeal (FM) as the only protein source, the second replacing 40% of the FM with SBM, and the third replacing 40% of FM with SPC. Each feed group was then divided into three feed treatments which added 0%, 0.2%, and 0.4% MO. The diets were 44.3-45% protein and 19.17-19.69 KJ/g energy. Eighty snakehead fingerlings (initial mean weight 7.045±0.08 g/fish) were assigned randomly to each of twenty-seven 500-L composite tanks with continuous aeration and 30% daily water exchange. MO supplementation of diets based solely on FM versus diets in which 40% of FM had been replaced by either SBM or SPC. The experiment period was 8 weeks.

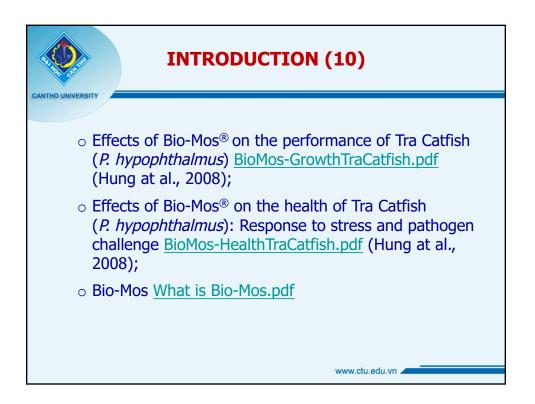

The results showed that both final weight (Wf) and weight gain (Wg) were significantly affected by diet and MO supplementation, as well as the interaction between the two. In general (with some exceptions), growth performance of fish was significantly better when they were fed SPC than when they were fed SBM or FM, and MO supplementation generally improved growth of the fish. FCR, PER and survival of fish in this experiment was significantly affected by diet, but only survival was significantly affected by MO supplementation and in no case were the interactions significant. FCR was significantly improved (i.e., lower) when fish were fed the SPC diet compared to the SBM diet, but neither was significantly different from fish fed the FM diet. PER for fish fed the FM and SPC diets was significantly greater than that for fish fed the SBM diet. Survival of fish fed SPC diet was significantly lower than that of fish fed the FM and SBM diets, but supplementation with MO, especially at the level of 0.2%, significantly improved survival. Red blood cell (RBC) counts were not significantly affected by either diet, MO supplementation, or the interaction of the two, but white blood cell (WBC) counts were significantly affected by both diet and MO supplementation (although not the interaction). Fish fed the SPC diet had significantly higher WBC counts than did fish fed the FM diet, but neither group was significantly different from fish fed the SBM diet. MO supplementation at both 0.2% and 0.4% levels significantly increased WBC counts compared to the unsupplemented diets. Immunoglobulin (Ig) levels were significantly increased by MO supplementation and the interaction of MO and diet, but diet did not affect Ig levels. At the end of the feeding trial but prior to the bacterial challenge, lysozyme levels were significantly affected by diet, MO supplementation and the interaction between the two. For each diet, the greater the level of MO supplementation, the greater the level of lysozymes. Reduction of fish production costs per kg fish produced, compared to fish fed the FM unsupplemented diet as the standard, ranged from 8.7 - 15.1 % for the various other diets tested. Following a 15-d bacterial challenge with Aeromonas hydrophila, fish lysozyme levels were significantly increased by MO

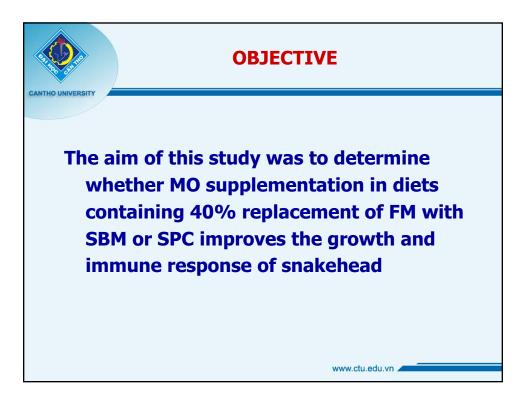

supplementation and the interaction between MO and diet, but not by the diets themselves. Again, the greater the level of MO supplementation, the greater the lysozyme level. After the 15d challenge, cumulative mortality was lower for fish given MO supplementation than it was for fish fed the unsupplemented diets. In general, fish fed the SBM diet, supplemented or not, had lower cumulative mortality than fish fed the FM or SPC diets.

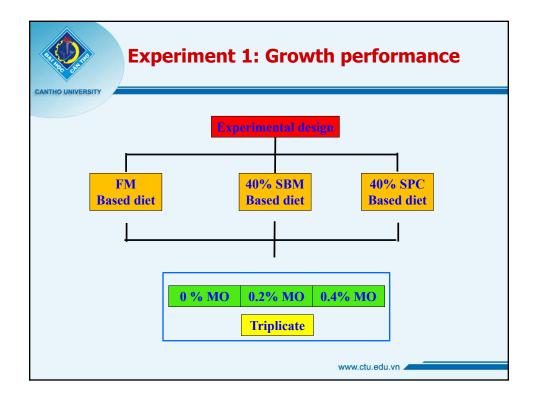


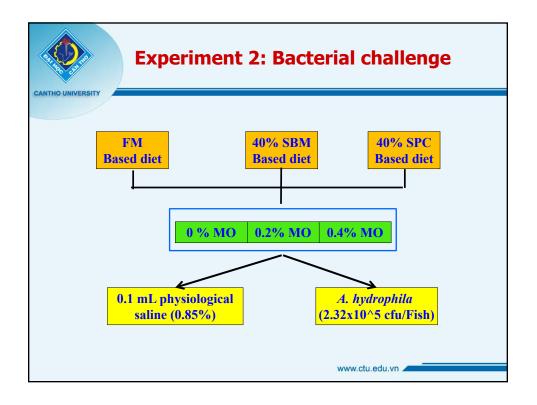


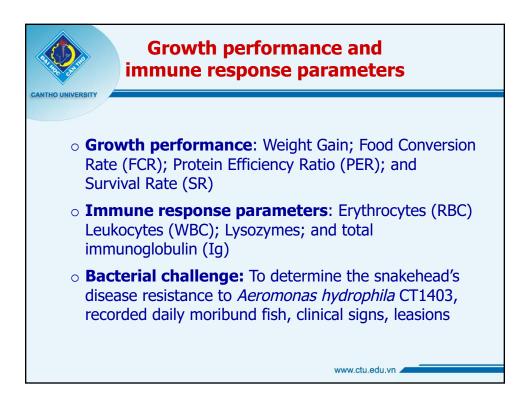








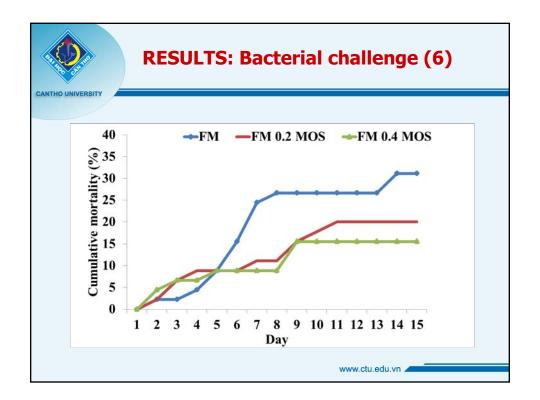


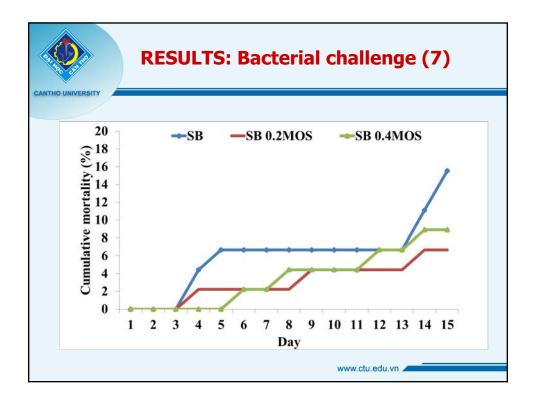


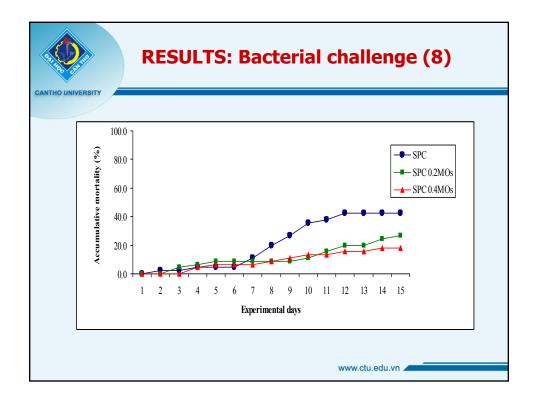
RESULTS: Growth performance		ance (1)	
Treatment	W _i (g)	W _f (g)	WG (g)
FM	7.00±0.14	47.7±0.6 ^d	40.7±0.5 ^f
FM 0.2MO	7.05±0.03	52.5±1.2 ^b	45.5±1.2 ^b
FM 0.4MO	7.01 ± 0.05	52.1±0.2 ^b	45.0±0.2 ^b
SBM	7.08±0.11	50.5±2.1 ^{bc}	43.4±2.0 ^{bd}
SBM 0.2MO	7.08±0.10	57.7±1.7ª	50.6±1.6 ª
SBM 0.4MO	7.05 ± 0.06	57.4 ± 1.5^{a}	50.3±1.5 ª
SPC	7.23±0.36	49.4±0.6 ^{cd}	42.2±0.4 ^{cf}
SPC 0.2MO	7.00±0.03	51.3±1.2 ^{bc}	44.3±1.3 ^{bd}
SPC 0.4MO	7.06 ± 0.05	48.9 ± 1.8^{cd}	41.9±1.8 ^{df}
P values			
Diets	-	0.000	0.000
МО	-	0.000	0.000
Diets*MO	_	0.003	0.003

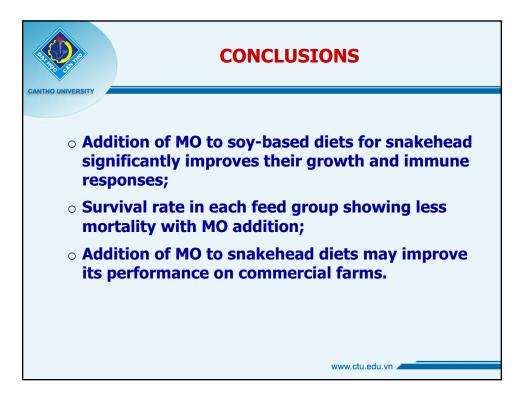
RESULTS: Growth performance (2)

Treatment	Growth param	eters	
	FCR	PER	SR (%)
Diet sources			
FM	$0.97 \pm 0.09^{\text{ab}}$	2.56 ± 0.28^{a}	76.2±3.3ª
SBM	1.05±0.08ª	2.20±0.24 ^b	78.1±3.9
SPC	0.93±0.09 ^b	2.67±0.24 ª	66.6±5.3 ^b
MO levels (%)			
0	1.03 ± 0.20^{a}	2.35±0.57 ^b	67.9±12.4
0.20	0.94±0.23 ª	2.53±0.66 ª	78.8±0.2
0.40	0.98±0.35 ª	2.54±0.52 ª	74.2±9.9
P values			
Diets	0.037	0.004	0.000
МО	0.167	0.260	0.000
Diets*MO	<i>0.843</i>	0.800	0.217

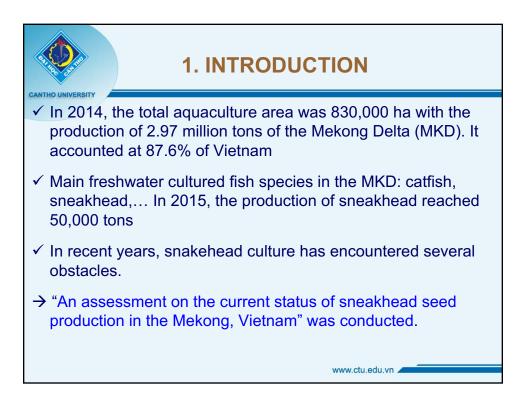

RESULTS: Growth performance (3)


Treatments	FC (USD/kg feed)	FPC (USD/kg fish gain)	Reduction in fish production cost (%)
FM	1.063	1.117	0.0
FM 0.2MO	1.072	0.964	13.4
FM 0.4MO	1.085	1.018	8.7
SBM	0.933	1.013	8.9
SBM 0.2MO	0.946	0.955	14.4
SBM 0.4MO	0.955	1.009	9.1
SPC	1.027	0.978	12.3
SPC 0.2MO	1.040	0.946	15.1
SPC 0.4MO	1.049	0.987	11.4
		www.ctu.	edu.vn

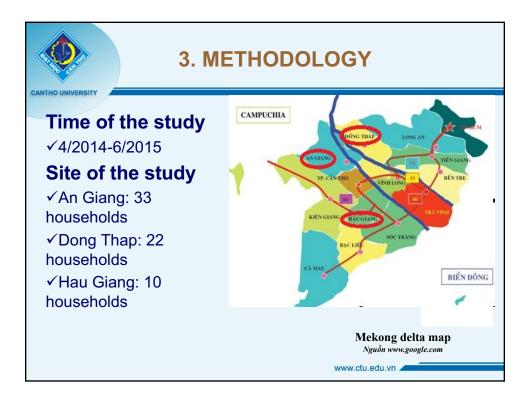

THO UNIVE

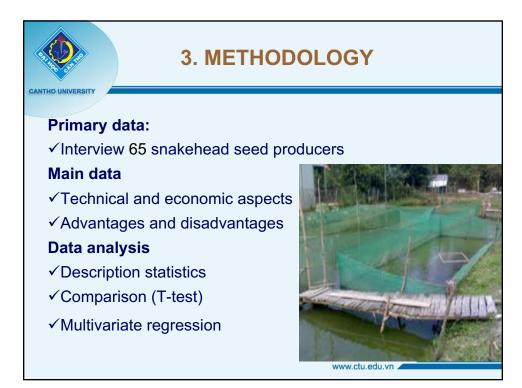

	RESULTS: Immune response (4)		
Treatment	Blood parameters		
	RBC (10 ⁶ cells/mm ³)	WBC (10 ³ cells/mm ³)	
Diet sources			
FM	2.17 ± 0.18^{a}	60.9±5.9 ^b	
SBM	2.18±0.33ª	66.3±7.1 ^{ab}	
SPC	2.20 ± 0.17^{a}	74.6±3.4ª	
MO levels (%)			
0	2.17 ± 0.87^{a}	58.6±2.7 ^b	
0.20	2.26±0.66ª	71.8±1.8 ª	
0.40	2.14 ± 0.52^{a}	71.4±19.8 ª	
P values			
Diets	0.973	0.001	
МО	0.567	0.000	
Diets*MO	0.273	0.081	

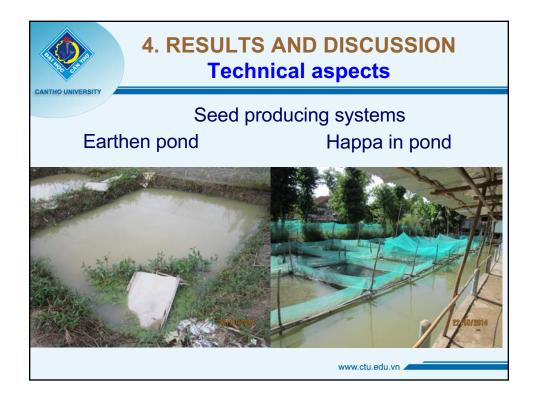
ANTHO UNIVERSITY	RESULT	S: Immune res	ponse (5)
Treatment	Ig (mg/ml)	Pre-challenge lysozyme (µg/ml)	Post-challenge lysozyme (µg/ml)
FM	9.09±0.85 ^c	263±6 ^{df}	459±3 ^{df}
FM 0.2MO	10.10 ± 0.57^{bc}	276±13 ^d	503±11 ^{bc}
FM 0.4MO	12.90±0.83ª	346±15 ^b	536±27ª
SBM	9.08±0.49 ^c	248±23 ^f	479±6 ^{cd}
SBM 0.2MO	9.42±0.50 ^c	283±3 ^d	485±7 ^c
SBM 0.4MO	12.00 ± 0.69^{a}	308 ± 14 °	529 ± 24 ^a
SPC	8.75±1.36 ^c	271 ± 14^{df}	443±4 ^f
SPC 0.2MO	$11.60 \pm 0.69^{\text{ab}}$	323±12 ^{bc}	524±7 ^{ab}
SPC 0.4MO	10.20 ± 1.27^{bc}	371±11 ª	487±3°
P values			
Diets	0.383	0.000	0.069
МО	0.000	0.000	0.000
Diets*MO	0.000	0.023	0.003
		www	/.ctu.edu.vn



Assessment on the current status of snakehead seed production in the Mekong Delta, Vietnam


Truong Hoang Minh, Tran Ngoc Hai and Robert Pomeroy College of Aquaculture and Fisheries University of Connecticut-Avery Point, Department of Agricultural and Resource Economics, Goton, Connecticut, USA


The study on "Assessment on the current status snakehead seed production the Mekong Delta" was conducted from April 2014 to June 2015 by directly interviewing 65 snakehead seed production hatcheries, which of 22 hatcheries in Dong Thap province, 33 hatcheries in An Giang province and 10 hatcheries in Hau Giang province. The result showed that there were two kinds of seed production systems which consist of earthen pond and hapa in earthen pond. The experience of earthen pond and hapa in earthen pond hatcheries owners were around 12.1 years and 9.26 years, respectively. Broodstock productivity in earthen pond and hapa in earthen pond were 8,375 larvae/kg and 7,954 larvae/kg of female, respectively. Snakehead seed nursing density in earthen pond years was 553 individual/m³, whereas hapa in earthen pond year was 2,108 individual/m³, Food conversion ratio of earthen ponds was lower than that of hapa in earthen ponds; and the survival rates were 56.2% and 61.9% respectively. The productivity of the hapa in earthen pond was 1,299 individual/m³, whereas earthen pond was 311 individual/m³. Total cost of earthen was 47 VND thousand/m³/production cycle) was lower than that of hapa in earthen pond (206 VND thousand/m³/production cycle). The total income of the earthen pond was (97.7 VND thousand VND/m²) lower than that of hapa in earthen pond (404 VND thousand/m²). The profit of earthen pond system was (49.8 VND thousand/m³) lower than that of hapa in pond 196 thousand VND/m³. Fingerlings consuming source of earthen pond system was mainly in the studied provinces (78.9%) and other provinces (13.21%), the rest (7.89%) was kept to culture by the producers. While the hapa in earthen pond system sold to snakehead seed wholesalers in the studied provinces accounted for 74.6% and consumers outside the provinces (8.8%), the rest (17.6%) was kept for farming by the seed producers.

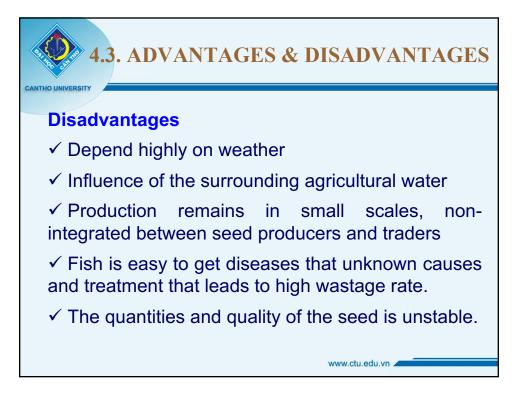


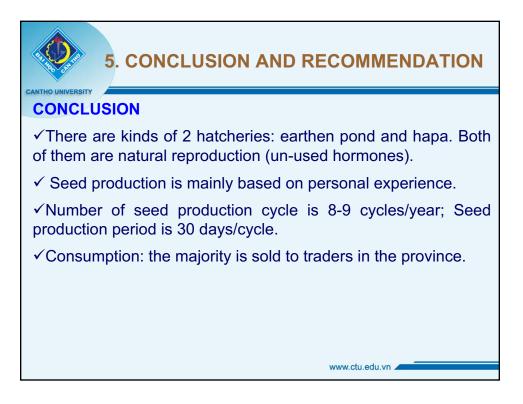


4.1. TECH	INICAL ASP	ECTS
Variables	Earthen pond	Нара
Hatchery area (m ²)	1,177±1,304	1,635±1,862
Area for spawning (m ²)	425±272	744±526
Nursing area (m ²)	425±272 ^a	212±218 ^b
Average area for spawning of 1 couple & nursing	11.6±1.55	12.1±1.55
Depth (spawning & nursing)	1.2-	-1.5
	www.ctu.ec	du.vn

	CHNICAL ASPECTS nd manipulate broodstock	
[°] Variables	Earthen pond	Нара
Broodstock source		
✓ Self-supply	28.9	33.3
✓ Buy from the province	57.9	44.4
✓ Buy from other provinces	13.2	22.2
Spawning times (times/year)	9.16±1.31	8.74±1.87
Number of broodstocks (couple/year)	36±21.5	61.1±44
Size (gram)	1,006±88.6	1,025±105
	www.ctu.edu.v	n 🖉

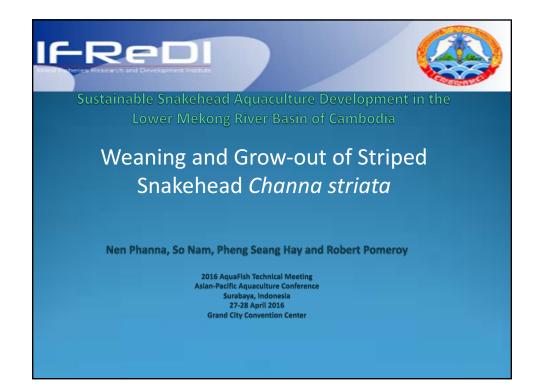
Variables	Earthen pond	Нара
Total feed for fry (kg/m²/year)	3.83±0.72ª	18.4±6.88
✓ Moina (%)	78.9	35.
✓ Trash fish (%)	21.1	64.

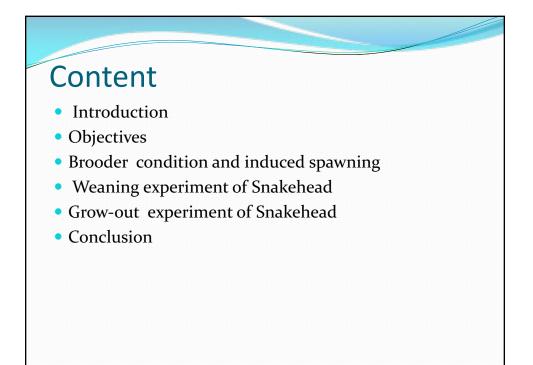

4.1. TECHNI	CAL ASPEC	TS
Variables	Earthen pond	Нара
No. of fry (ind/couple)	8,351±1,263ª	8,089±1,064 ^b
Total seed (',000 ind./cycle/HH)	295±160ª	499±373 ^b
Nursing density (ind/m ²)	733±160ª	2.881±1047 ^b
Survival rate (%)	56.2±2,55ª	61,9±5,3 ^b
Yield (ind./m ²)	412±92.1ª	1,773±630 ^b
Selling price (USD/ind.)	11.02±0.75	10.7±0.001
Thinning ratio (%)	7.89	81.48
Consumption (%)		
✓ Culture	7.89	17.6
✓ Selling within the province	78.9	74.6
 ✓ Selling to other provinces 	13.2	8.8


4.2. THE ECONOMIC ASPECTS


Variables	Earthen pond	Нара
Fixed costs (USD/m²)	0.3	0.25
✓ Construction depreciation	41%	36%
✓ Machinery depreciation	59%	64%
The variable costs (USD/m ²)	27.5	126.7
✓ Feed for broodstock	2.2ª	9.1 ^b
✓ Broodstock	0.8 ^b	3.1ª
✓ Feed for fry	16.5ª	78.6 ^b
✓ Chemicals	7.7 ^a	35.1 ^b
✓ Energy	0,34ª	0.83 ^b
	www.ctu.edu	.vn

Variables	Earthen pond	Нара
Total cost (USD/m²)	27.8±9.1ª	127±65,5 ^b
Revenue (USD/m ²)	48.8±11.3ª	202,0±66.5 ^b
Net income (USD/m ²)	19.5±10.1ª	54.5±39.5 ^b
Cost profit ratio (times)	0.74±0.36ª	0.46±0.32 ^b
Percentage losses (%)	5.2	7.4

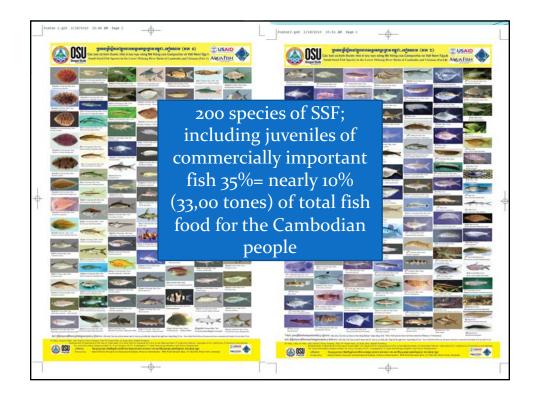


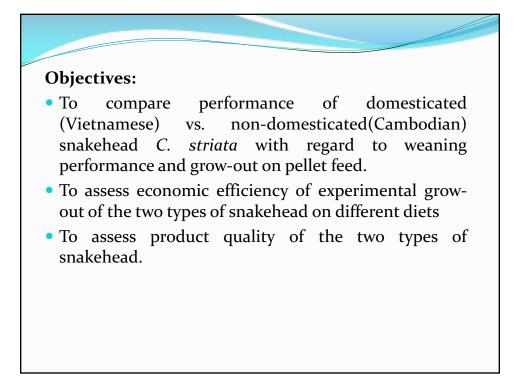


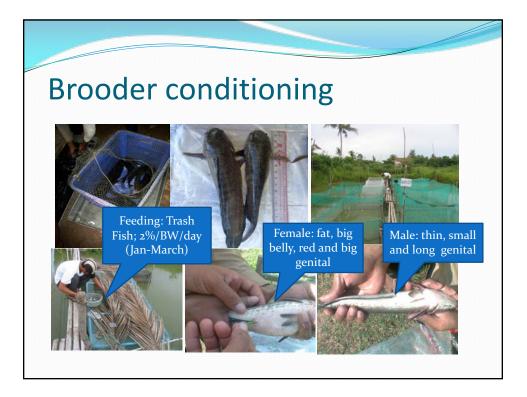
Sustainable snakehead aquaculture development in the Lower Mekong Basin of Cambodia

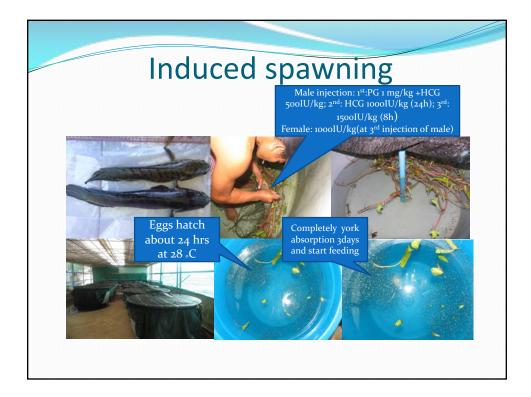
Phanna Nen, Nam So, Seang Hay Pheng, Robert Pomeroy Fisheries Administration, Phnom Penh, Cambodia; phannanen@gmail.com

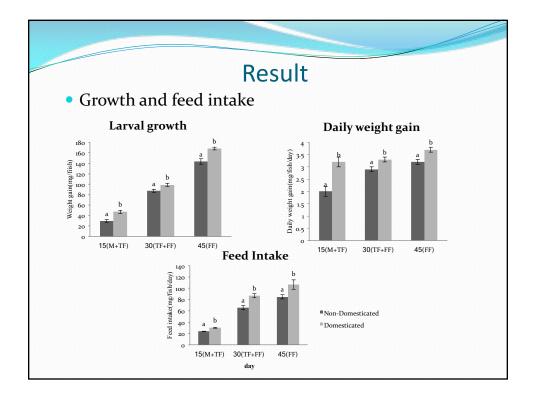
Farming snakehead is prohibited in Cambodia due to its dependence on freshwater small-sized fish (FSF) for sourcing key dietary nutrient inputs and seed collected from the wild, while lack of technologies on developing of snakehead hatcheries through breeding, weaning and grow-out on formulated or pelleted diets. This study was conducted to investigate weaning and grow-out performance of the wild indigenous Channa striata (non-domesticated) in Cambodia compared to those of domesticated snakehead imported from Vietnamese hatcheries on formulated or pelleted feed (FF or PF) and to assess economic efficiency and product quality of the two types of snakehead fed on different diets at the end of experimental grow-out. In the experiment 1 (weaning): 3 day-old larvae of both types of both C. striata were stocked in 50 L-tank at a density of 5 fish L-1 and fed on Moina, FSF and FF (45% CP) to satiation four times daily for 45 days. In experiment 2 (grow-out): the experiment was conducted in 18 hapa-nets (1.8m x 2.5 m x 1.8 m) placed in 3 earthen ponds (300 m2 each) at a density of 100 fingerlings hapa-1 (3 replicated hapas for domesticated fingerling and 3 replicated for non-domesticated). Snakehead fingerlings (12-13 g fish-1) were fed on three diets: 1) FSF (Pond 1); 2) PF (40% CP, Pond 2); and 3) 50:50 mixtures of FSF and PF (Mix, Pond 3). The fish was fed to satiation twice daily for 6 months. The results of the study showed that weaning of non-domesticated and domesticated C. striata larvae on FF can start at 17 days after hatch with replacement ratio 10% FF day-1 for substituting FSF. Feed intake (107 mg fish-1 day-1) and final weight (170 mg) of domesticated snakehead was higher than the ones (85 mg fish-1 day-1 and 146 mg, respectively) of nondomesticated snakehead, while survival rate (29%) and Cannibalistic rate (47%) of the domesticated was lower than the ones (36% and 51%, respectively) of the non-domesticated. In grow-out experiment, both snakeheads can accept formulated or pelleted feed. However, the domesticated snakehead showed higher survival rate (75%), better growth performance (final body weight 367 g fish-1), higher feed intake (3 g fish-1 day-1) and food conversion ratio (FCR; 1.5) than the non-domesticated snakehead (69% and 233 g fish-1, 2 g fish-1 day-1 and 1.7. respectively) since the domesticated hatchery snakehead has been gone through more than twodecade domestication. Considering economic efficiency, replacing freshwater small-sized fish by pelleted feed up to 100% is possible and profitable for both snakeheads. However, the domesticated snakehead (about US\$ 0.35/kg fish produced) showed higher profit than the nondomesticated snakehead (US\$ 0.25/kg fish produced). In regards to product quality, pelleted feed does not significantly affect the fillet quality of both cultured snakeheads compared to a diet of FSF and a mixture.

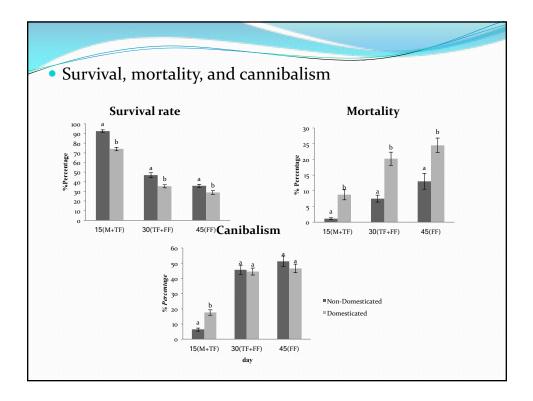

Introduction

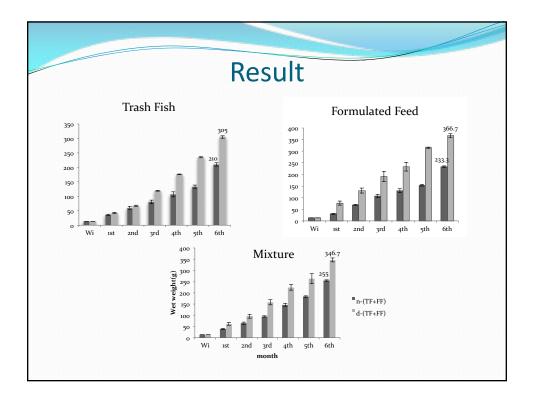

•Fish is the most important source of protein (> 80% of total animal protein) for consumption.

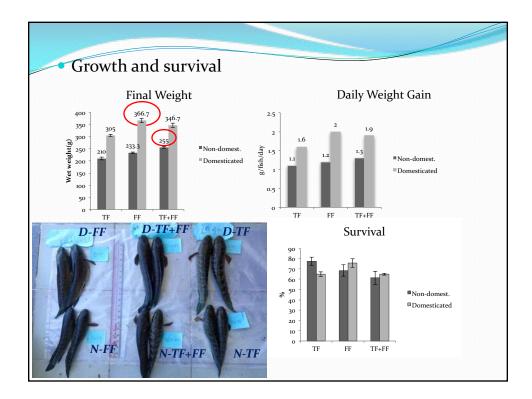

• Per capita consumption: 52.4 kg/ person/year

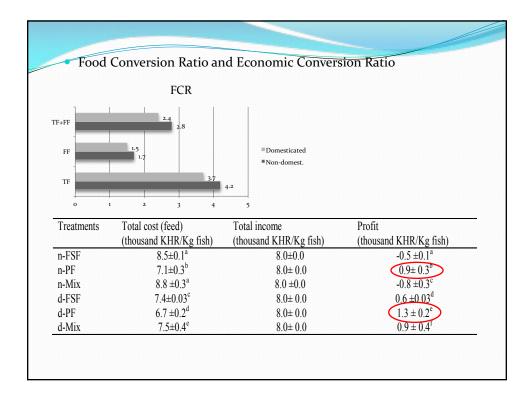


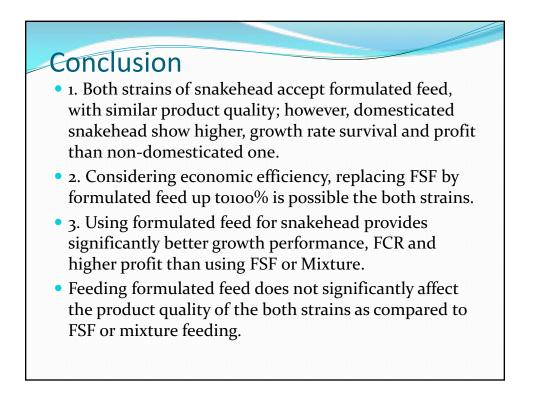







	out 45/0 CI	ude Protein)
Main ingredients	(g)	
Fish meal	570	
Soy bean meal	140	
Rice bran	100	
Cassava meal	130	
Vitamin C	2	
Premix mineral-vitamin	15	
Fish oil	25	
Phytase	0.2	
Binder	17.8	
Total	1000	





AquaFish Technical Session 4 Innovations in Smallholder Aquaculture Technology: AquaFish Economics and Marketing Research

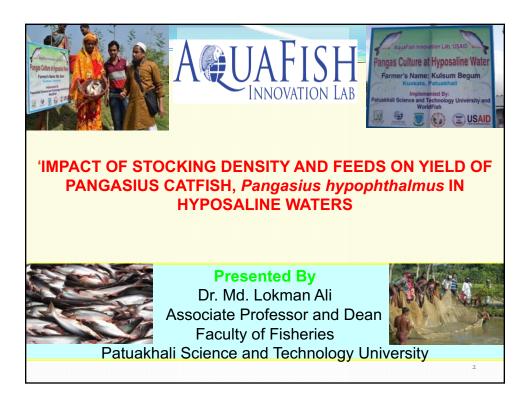
Impact of stocking density and feeds on yield of Pangasius catfish *Pangasius hypophthalmus* in hyposaline waters

M. Lokman Ali^{*}, S. Mahean Haque, M. A. Wahab and Russell Borski *Patuakhali Science and Technology University, Dumki, Patuakhali-8602, Bangladesh & University of Malaya, Malaysia, lokman.fri@gmail.com

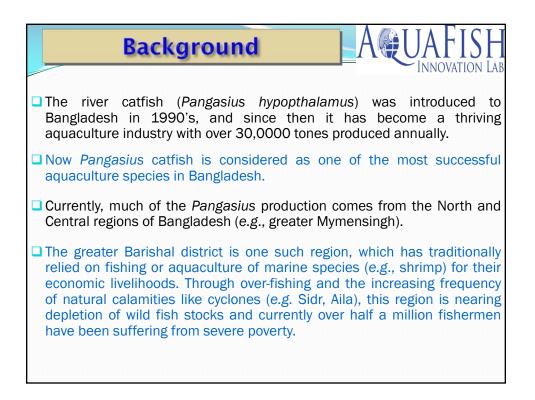
The river catfish (*Pangasius hypopthalamus*) was introduced to Bangladesh in the 1990's from Thailand, and has since become a thriving aquaculture industry with over 3 million tones produced annually. The fish is cultured in freshwater. The aim of this investigation was to findout the best stocking density and feed for expanding the culture of *Pangasius* catfish to hyposaline waters in Southern Bangladesh. This region is severely impacted by overfishing, and

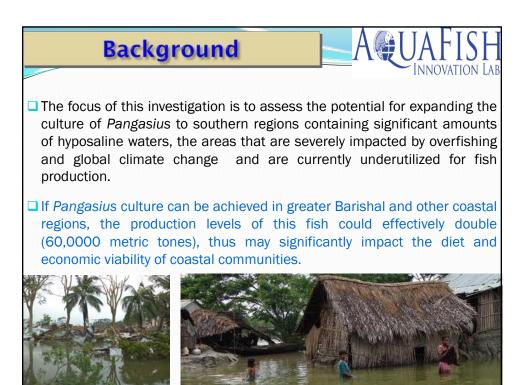
is underutilized due to increasing susceptibility to rising sea levels linked to global climate change, and remains underutilized for fish. If *Pangasius* culture can be introduced to coastal regions of Bangladesh, it may significantly improve food security and the economic viability of its communities.

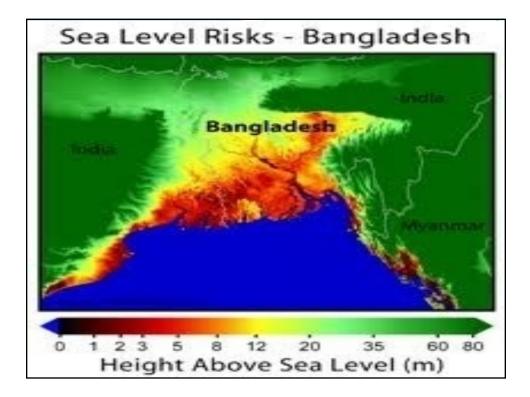
A research was undertaken in 12 ponds to assess the effect of commercial and formulated feed with the consideration of stocking density on growth of Thai pangus (*Pangasius hypophthalmus*) for a period of 6 months from 1 May to 28 October, 2015 in the coastal Patuakhali district of

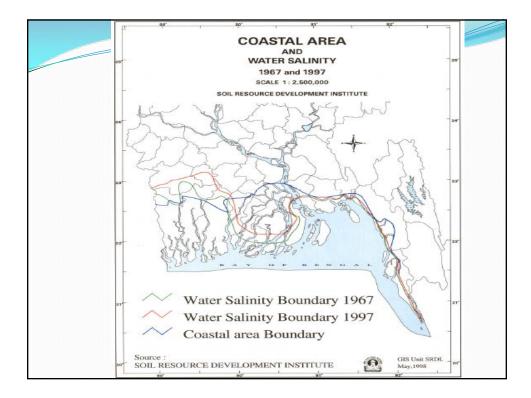

e	5	1 5	e,			
Production parameters of Pangasius in hyposaline water						
Parameters	T ₁	T ₂	T ₃			
Initial weight (g)	65.56 ± 4.53	65.56 ± 4.53	65.56 ± 4.53			
Final weight (g)	786.34 ± 45.21 ^a	790.62± 45.21 ^a	784.89±51.8 0 ^a			
Survival rate (%)	95.71±3.64 ^a	95.45±3.12 ^a	95.12±2.85 ^a			
Weight gain(g)	720.78±36.41 ^a	725.06±35.6 4 ^a	719.33±37.2 1 ^a			
FCR	1.63±0.26 ^a	1.62±0.28 ^a	1.64±0.39 ^a			
Yield (kg/ha)	15,538 ±1293 ^a	15,622±1374 ª	23,264 ±1347 ^b			
Net Profit	11,438 US\$ ^a	8,275 US\$ ^b	12,104 US\$ °			
BCR	1.91	1.53	1.51			

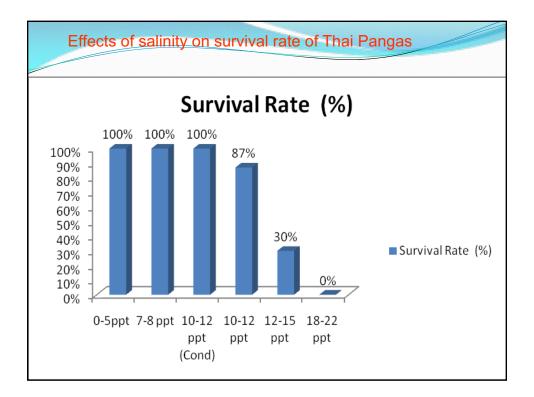
Bangladesh. In T₁ and T₂ formulated (28% CP) and commercial feed (Mega floating feed, 28% CP) were used at same stocking density (2/m²). In T₂ and T₃ different stocking densities (2/m² and $3/m^2$) were used but feed was same (commercial feed). Fish were fed with commercial feed (28% CP) and formulated feed (28% CP) at an initial rate of 10% body weight (bw)/day down to 3% bw/day. Feed was provided twice daily at 09:00 and 14:00 h.

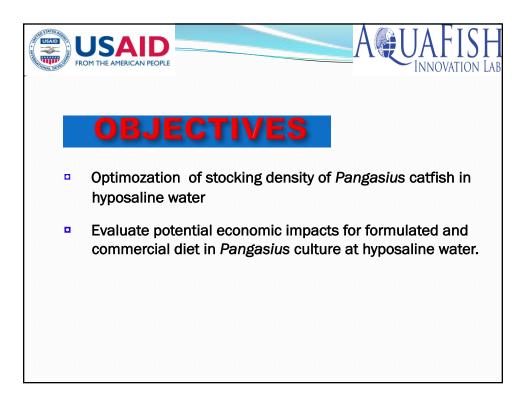

No significant differences (P>0.05) were observed in survival rate, weight gain, SGR, feed conversion ratio (FCR), yield, and benefit cost ratio (BCR) among the treatments. Significantly (P>0.05) higher production were observed in T₃ (23,264 kg/ha) followed by T₁ (15,538 kg/ha) and T₂ (15,622 kg/ha). Significantly higher (P>0.05) net profit was found in T₁ (11,438

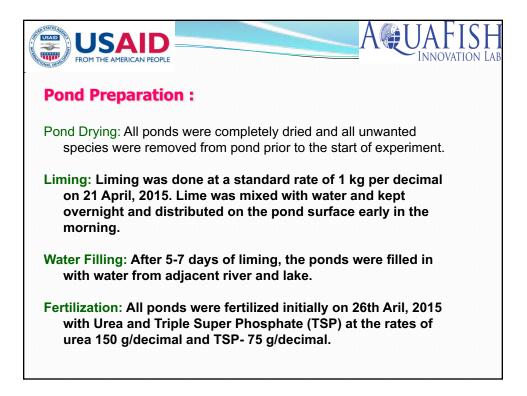

US\$/hec.) than in T₂ (8,275 US\$/hec.). Total cost was higher in T₃ than in T₂ but higher net profit was observe in T₃ (12,104 US\$/hec) than in T₂ (8,275 US\$/hec). But the cost of formulated feed is lower than commercial feed as net profit is in formulated feed, so formulated feed is best for better economic benefit. Due to higher net profit in high stocking density ($3/m^2$) than low stocking ($2/m^2$), high stocking density with formulated feed is recommended for profitable pangas culture. Adoption of *Pangasius* culture in coastal regions can provide an alternative livelihood for communities impacted by water salinization resulting from global warming.











ble-1: Research Design					
Treatment	Replications	Pond No	Stocking density	Feed	
	R ₁	01	80/decimal	Formulated feed	
T ₁	R ₂	02	80/decimal	Formulated feed	
	R ₃	03	80/decimal	Formulated feed	
	R ₄	04	80/decimal	Formulated feed	
	R ₁	05	80/decimal	Commercial feed	
T ₂	R ₂	06	80/decimal	Commercial feed	
	R ₃	07	80/decimal	Commercial feed	
	R ₄	08	80/decimal	Commercial feed	
	R ₁	09	120/ decimal	Commercial feed	
T ₃	R ₂	10	120/ decimal	Commercial feed	
-	R ₃	11	120/ decimal	Commercial feed	

Feeding :

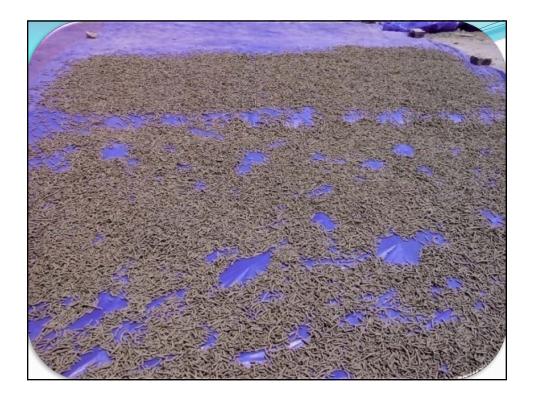
Fish were fed with formulated feed – Mega feed in T_2 and T_3 at 10-3% of body weight. In treatment 1 formulated feed were fed at same rate. Feeding rates was adjusted accordingly based on this biweekly sampling of fish. The quantity of feed to be applied daily was recorded in the record sheet.

Low cost Feed formulation

ŀ	A@UAFIS	Н
	Innovation	LAB

A@l

INNOVATION LAB


Name of the ingredients	% in feed	Amount of protein (%) in the ingredient	Protein contribution in the feed
Fish meal	30%	60%	18 %
Mustard oil cake	20%	32%	6.4%
Rice bran	20%	7.5%	1.50%
Wheat bran	15%	11%	1.65%
Wheat flower	3%	15%	0.45%
Molasses	2.5%	-	
Vitamin mineral premix	0.5%	-	
Total	100%		28%

Prox	Proximate composition analysis of commercial and formulated feed							
	Proximate	Feed (Mea	ns ±SE)					
	composition%	Mega feed	Fresh feed					
	Moisture	15.56±0.030	15.26±0.185					
	Crude lipid	4.04±0.045	4.321±0.387					
	Crude protein	28.06±0.170	28.10±0.164					
	Ash	16.08±0.305	15.34±0.232					
	Crude fibre	5.66±0.100	5.96±0.145°					

Water quality parameters :

Water quality parameters such as water temperature, dissolved oxygen, pH, alkalinity, ammonia, nitrite and transparency were recorded regularly.

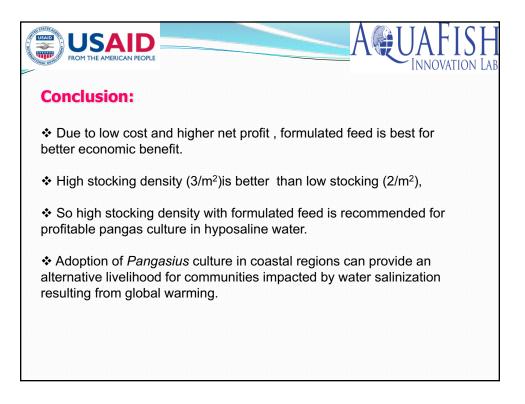
A

INNOVATION LAB

or Quality r aran	neters		
Parameters	T ₁	T ₂	T ₃
Water Temperature	29.50 ± 0.42	29.50 ±	29.50 ±
(°C)	°C	0.42°C	0.42°C
Dissolved Oxygen	5.17 ±0.12	5.20 ±0.13	5.23 ±0.12
(mg/L)			
рН	7.81 ± 0.32	7.82 ± 0.29	7.75± 0.34
Alkalinity (mg/L)	152.5±2.12	155.3±2.61	158.7±2.15
Ammonia (mg/L)	0.05 ± 0.02	0.04 ± 0.03	0.05 ± 0.03
Nitrite (NO ₂) (mg/L)	0.06 ± 0.02	0.05 ± 0.01	0.05 ± 0.01
Salinity (PPT)	9.6± 0.7	9.4± 0.6	9.7± 0.6

	-	•	Sd)
Yield parameters	T_1 (Formul.+ 2/m ²)	T_2 (Comm.+ 2/m ²)	$T_3 (Comm + 3/m^2)$
Mean initial weight (g)	65.56 ± 4.53	65.56 ± 4.53	65.56 ± 4.53
Initial length (cm)	21.18 ± 1.68	21.18 ± 1.68	21.18 ± 1.68
Mean final weight (g)	786.34 ± 45.21 ^a	790.62± 45.21 ^a	784.89±51.80 ª
Final length (cm)	42.87 ±5.31	43.10±5.23	41.96±6.22
Survival Rate (%)	95.71±3.64 ª	95.45±3.12 ª	95.12±2.85 ^a
Mean weight gain(g)	720.78±36.41 ª	725.06±35.64 ª	719.33±37.21 ª
FCR	1.63±0.26 ^a	1.62±0.28 ^a	1.64±0.39 a
Yield (kg/ha)	15,538 ±1293 ª	15,622±1374 ª	23,264 ±1347 ^b

		earch	
Investment	T ₁ (Formul.+ 2/m ²)	T ₂ (Comm.+ 2/m ²)	T ₃ (Comm+3/m ²)
Pond Preparation	80 US\$	80 US\$	80 US\$
Fingerling	2,026 US\$	2,026 US\$	3,040 US\$
Total feed used	25327 kg	25327 kg	38,152 kg
Feed cost	10,384 US\$	13,676 US\$	20,602 US\$
Total cost	12,490 US\$ ^a	15,782 US\$ ^b	23,722 US\$ °
Fish production/hector	15,538 kg ª	15,622 kg ª	23,264 kg ^b
Retail price of fish/kg	1.54 US\$	1.54 US\$	1.54 US\$
Gross income (from fish sale	23,928 US\$ ª	24,057 US\$ ª	35,826 US\$ ^b
Net Profit/hactor	11,438 US\$ ^a	8,275 US\$ ^b	12,104 US\$ °
Benefit-Cost Ratio (BCR)	1.91	1.53	1.51



Price volatility in the African catfish reseller markets in Uganda

James O. Bukenya Department of Finance, Agribusiness and Economics Alabama A&M University, Normal, AL 35762 james.bukenya@aamu.edu

The paper examines price volatility in the African catfish (Clarias gariepinus) markets in Uganda. An understanding of the structure of price volatility is of great interest since this is a major contributor to economic risk in the fisheries industry. Well-functioning markets transmit price signals, which allow changes in demand to be met by supply. When demand is greater than supply, producers increase production in response to price signals, and this increased production, in turn, helps to stabilize prices. By transmitting information in this way, markets help to reduce price volatility. The volatility process in catfish prices was analyzed based on monthly data from January 2006 to August 2013.

The analysis draws on price data for ex-vessel, wholesale and retail market channels. The ex-vessel prices were collected at different landing sites along Lake Victoria while corresponding retail and wholesale prices were gathered from fish markets in the central region. The GARCH model, which is widely used in various branches of econometrics, is used to estimate the volatility parameters. The model can be represented as $\varepsilon_t = v_t \sqrt{h_t}$ where v_t is a white noise term and

 $h_t = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-1}^2 + \sum_{i=1}^{p} \beta_i h_{t-1}$ defines the conditional variance. The model is estimated with a one-

month lag in the ARCH and GARCH terms.

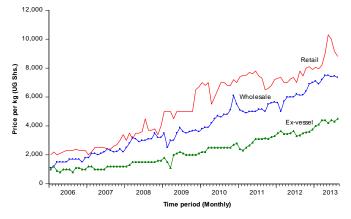
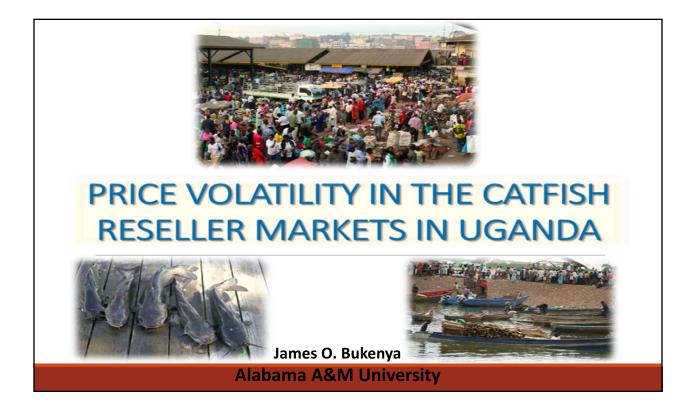
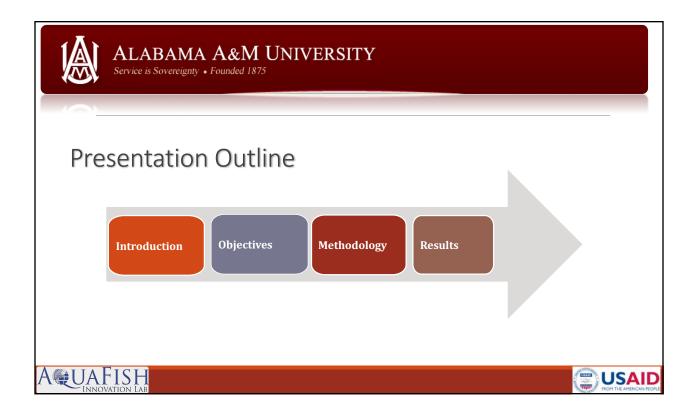


Figure 1 presents a plot of the series indicating increasing trends over the study period. Descriptive statistics reveal that exvessel and wholesale prices are moderately skewed to the right, indicating that the series have longer right tails than left tails while retail price are approximately symmetric. All series have kurtosis values lower than 3, and the Jarque-Bera statistics shows nonnormal distribution for all series.

FIGURE 1. Catfish prices in the Reseller Markets

In a GARCH (1,1) model, the sum $(\alpha_1 + \beta_1)$ measures the degree of volatility persistence in the market. Thus it reveals the degree of efficiency in the market, where the intuition is that if a market is completely efficient it should immediately correct to any shock. The results reveal evidence for volatility persistence estimated to 0.91, 0.62 and 0.90 for ex-vessel, wholesale and retail markets, respectively. The results suggest that the wholesale market displays a larger degree of efficiency than the ex-vessel and retail markets. Similar findings have been reported is previous fisheries


studies. For instance, Buguk et al. (2003) found volatility persistence value for catfish equal to 0.98 while Oglend (2008) reported persistence value for salmon equal to 0.81.


The estimated degree of persistence in the respective markets was used to estimate the half-life of a volatility shock. The half-life estimates $[\log(0.5)/\log(\alpha_1 + \beta_1)]$ measures the time it takes for

Model	Variable	Coefficient	Std. Error	z-Statistic	Prob.	Volatility
Ex-vessel	RESID(-1)^2	0.522749	0.174017	3.004011 4.856455	0.0027	0.9058
Wholesale	GARCH(-1) RESID(-1) ²	0.383073 0.486276	0.218619	2.224304	0.0000	0.6158
Retail	GARCH(-1) RESID(-1)^2	0.129483 0.112550	0.296313 0.067168	0.436981 1.675665	0.6621 0.0938	0.8986
Relall	GARCH(-1)	0.786065	0.093091	8.444077	0.0000	0.0300

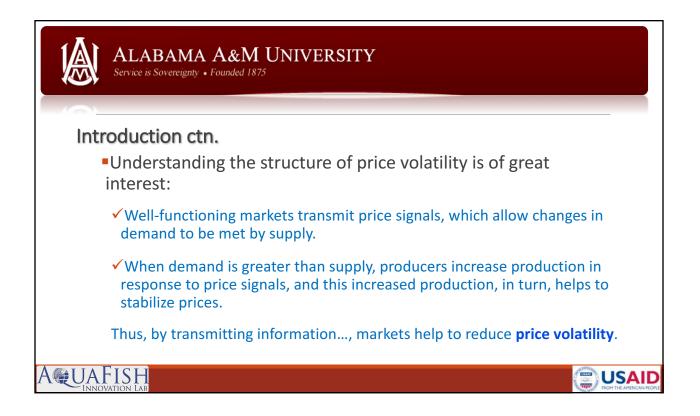
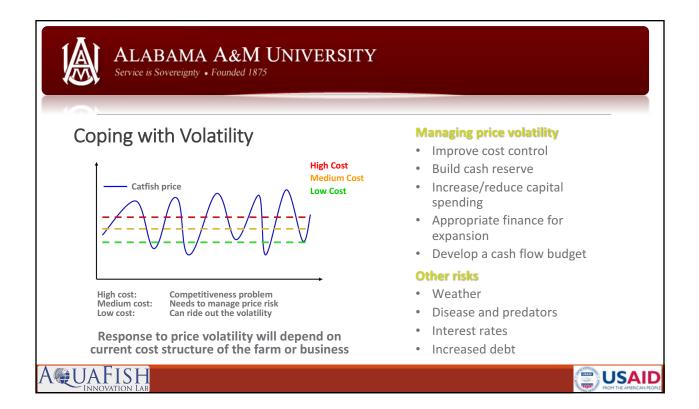
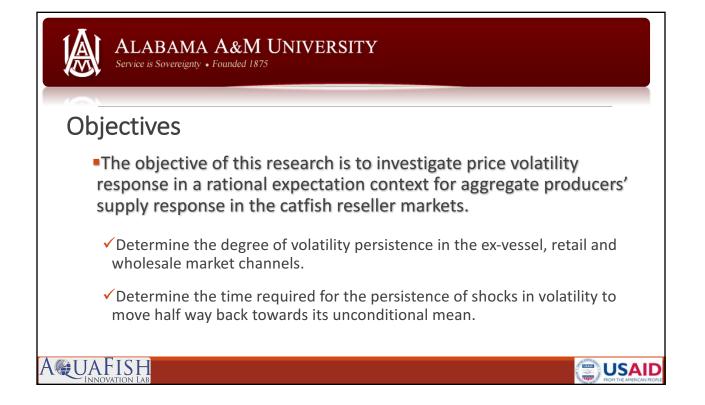
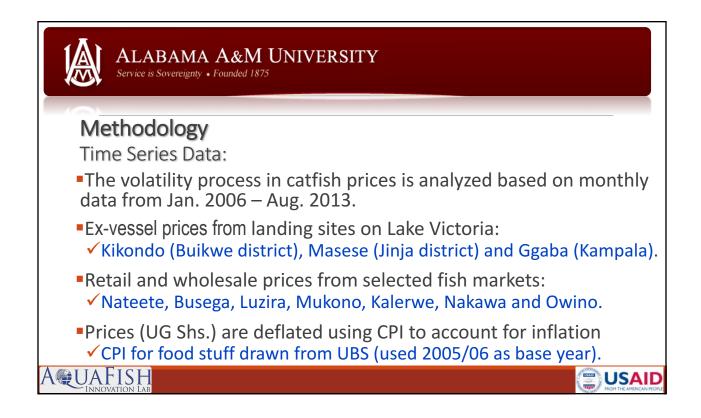
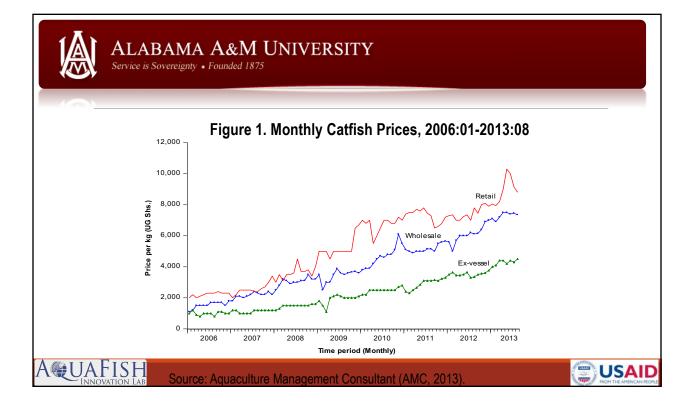

a shock to fall to half of its initial value. In this study, the results show half-life time of 7 months for the ex-vessel market, 1.4 months for the wholesale market and 6.5 months for the retail market. Based on the overall findings, catfish prices in Uganda exhibit substantial volatility.

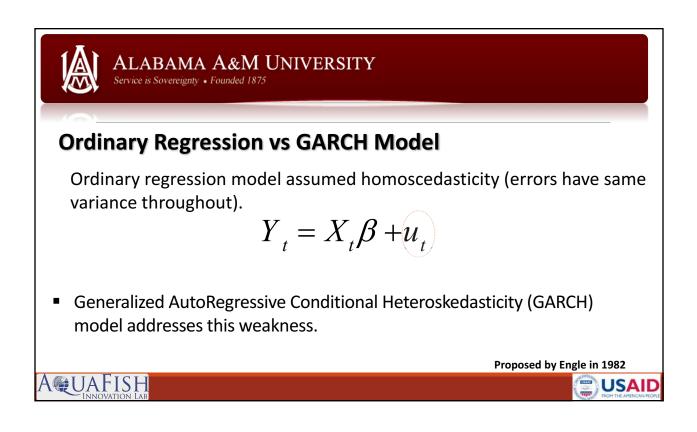

TABLE 1. GARCH Estimation Results for Catfish Markets













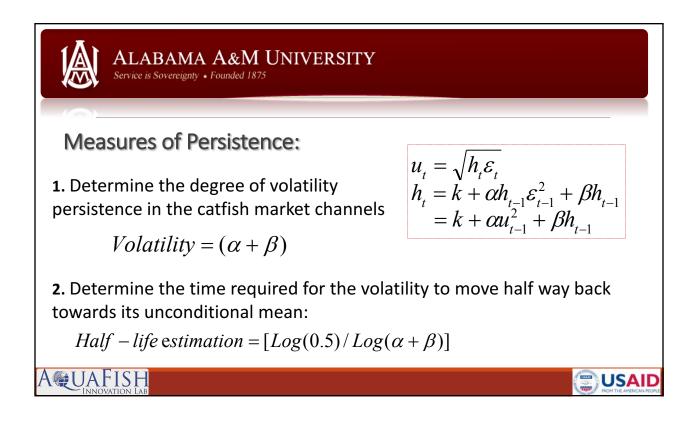
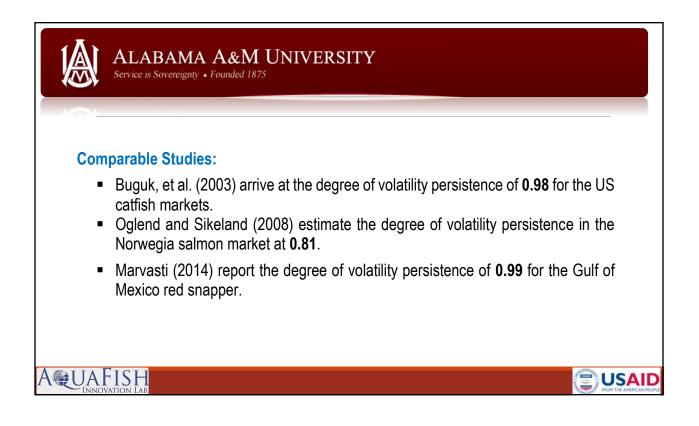


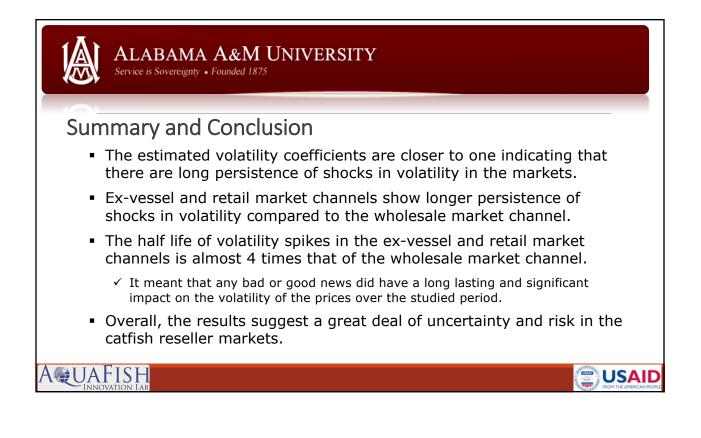
Table 1. GARCH Estimation Results

A

RESID(-1)^2 GARCH(-1) 0.522749 0.383073 0.174017 0.078879 3.004011 4.856455 0.0027 0.0000 0.9058 /holesale RESID(-1)^2 GARCH(-1) 0.486276 0.218619 2.224304 0.0261 0.6158 /holesale GARCH(-1) 0.129483 0.296313 0.436981 0.6621 0.6158 etail RESID(-1)^2 0.112550 0.067168 1.675665 0.0938 0.8986
^{/holesale} GARCH(-1) 0.129483 0.296313 0.436981 0.6621 0.6158 RESID(-1)^2 0.112550 0.067168 1.675665 0.0938 0.8986


Table 1.	GARCH Estima	tion Results				
Model	Variable	Coefficient	Std. Error	z-Statistic	Prob.	Volatilit
Ex-vessel	RESID(-1) ² GARCH(-1)	0.522749 0.383073	0.174017 0.078879	3.004011 4.856455	0.0027	0.905
Wholesale	RESID(-1) ² GARCH(-1)	0.486276 0.129483	0.218619 0.296313	2.224304 0.436981	0.0261 0.6621	0.615
Retail	RESID(-1) ² GARCH(-1)	0.112550 0.786065	0.067168 0.093091	1.675665 8.444077	0.0938	0.898

		nation Result	-			
Model	Variable	Coefficient	Std. Error	z-Statistic	Prob.	Volatility
Ex-vessel	RESID(-1) ² GARCH(-1)	0.522749 0.383073	0.174017 0.078879	3.004011 4.856455	0.0027 0.0000	0.9058
Wholesale	RESID(-1) ² GARCH(-1)	0.486276 0.129483	0.218619 0.296313	2.224304 0.436981	0.0261 0.6621	0.6158
Retail	RESID(-1) ² GARCH(-1)	0.112550 0.786065	0.067168 0.093091	1.675665 8.444077	0.0938 0.0000	0.8986


Note: the sum $(\alpha_1 + \beta_1)$ measures the degree of volatility persistence in the market.

ALABAMA A&M UNIVERSITY Service is Sovereignty • Founded 1875

Table 2	. Half-Life Estimat	ion Results	
Model	Variable	Coefficients	Half-Life Estimate
Ex-vessel	log(0.5)	-0.69315	7 months
EX-Vessel	log(∝₁+β₁)	-0.09891	7 months
Wholesale	log(0.5)	-0.69315	1.4 months
vnoiesale	log(∝₁+β₁)	-0.48490	1.4 monuns
Retail	log(0.5)	-0.69315	6.5 months
i (Ctall	log(∝₁+β₁)	-0.10690	0.5 11011115

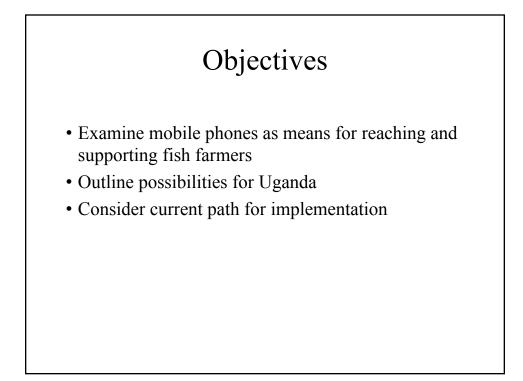
Implementing mobile marketing and technical support for fish farmers: Uganda grower experiences and aspirations

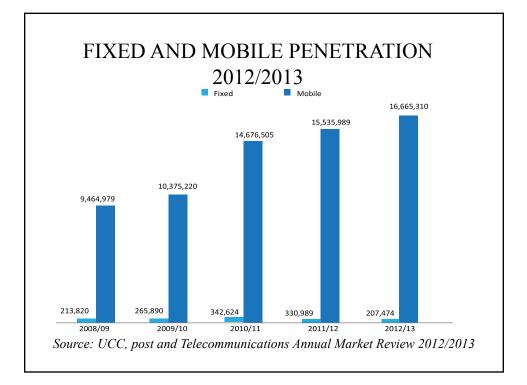
Joseph Molnar*. M. Matuha*, G. Atukunda, J. Walakira, J. Terhune, J. Bukenya, S. Naigaga AquaFish Innovation Lab Uganda-Kenya Project Department of Agricultural Economics & Rural Sociology International Center for Aquaculture & Aquatic Environments Auburn University Auburn, AL 36849-5406 <u>molnajj@auburn.edu</u>

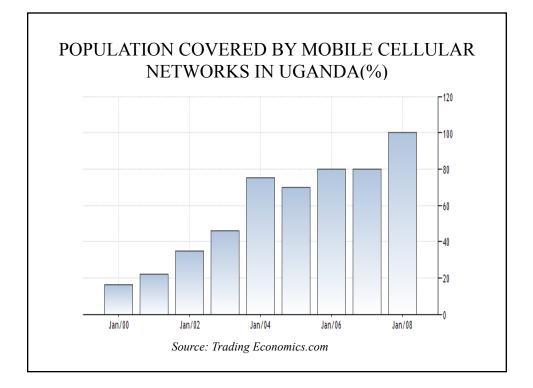
Improving fish culture productivity is one of the most pressing issues for African aquaculture. The widespread availability of mobile phones and improving coverage over wide areas position the technology as a necessary component of sustainable improvements in farm practice. Coupled with corresponding innovation in existing social and institutional arrangements, mobile phones have the potential to make significant contributions to increase income for small-scale fish farmers. As mobile phones converge with other mobile devices such as netbooks and tablets, the opportunities proliferate. Affordability will remain an issue, but cell phone capability and market penetration grow. Old style extension approaches must be supplanted (or at least supplemented) by mechanisms that provide for widespread dissemination of technical information to stimulate and support the adoption of productivity increasing practices. Technical guidance, product assembly, and price discovery are but three of the many fundamental applications of cell phones in aquaculture. Fishers and farmers use cell phones to get market prices to know where to sell products. Fish farmers use them for extension support and to arrange for feed and seed.

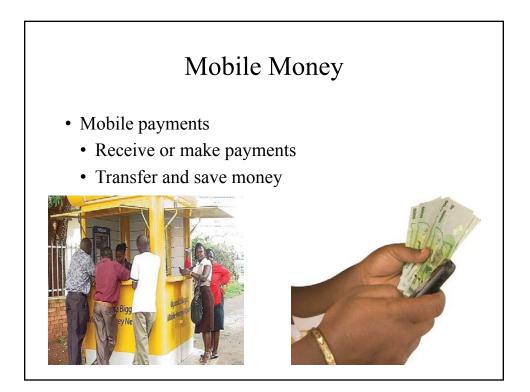
The presentation considers the process of implementing cell-based marketing, input supply, and technical support services for fish farmers in Uganda. Baseline information about the needs and interests of fish farmers was developed through focused group interviews conducted in five Uganda districts: Masaka, Mukono, Mpigi, Bushenyi and Kalungu in May, June, July and August 2014. Data were obtained from 48 Ugandan fish farmers (14 women). The main findings reveal that cell phone use is common among fish farmers, but that intermediary farmers play an important role in connecting producers to markets and suppliers. Sustainable systems will feature a business model that recovers covers costs in a minimal way, while responding to farmer needs and interests in a flexible way. Public agencies, nongovernmental organizations, and cellular service providers must work together to advance the use of cell phones guide, coordinate, and instruct fish farmers. Public agencies will be challenged to provide timely and technically correct information to producers.

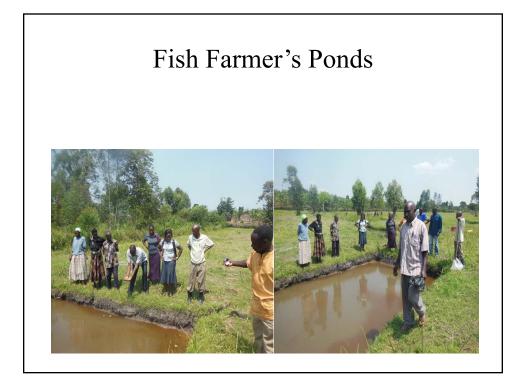
Implementing Mobile Phone Marketing and Technical Support for Fish Famers: Uganda Grower Experiences and Aspirations

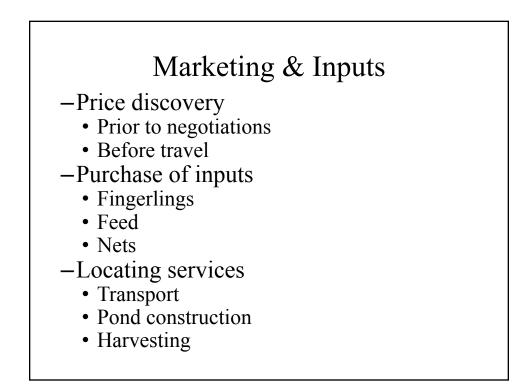


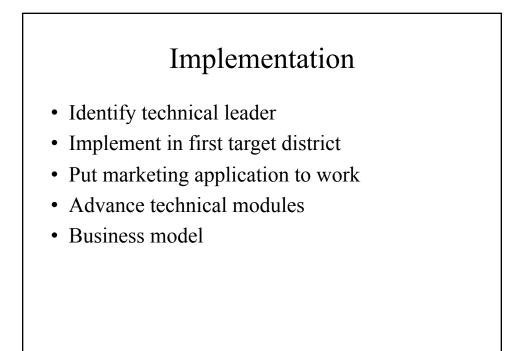

Joseph Molnar, Moureen Matuha, Gertrude Atukunda, John Walakira, Jeffrey Terhune, James Bukenya, Shamim Naigaga Auburn University Auburn, Alabama USA


Fish Species Cultured in Uganda


- Nile tilapia (Oreochromis niloticus)
- African catfish (Clarias gariepinus)
- Common carp (Cyprinus carpio)






Mobile Support Applications

- No miracles
- Facilitate existing processes
- Several possibilities
- Farmers helping farmers
- Marketing first target application
 - Private sector vendor manager
 - Technical advisory committee
 - Content from NaFIRRI, AquaFish, others

Business Models

- Several possibilities, none fixed
- USAID & GOU support for start-up
- Farmers pay
 - Subscriptions & use costs
 - Text costs
- Management entity
 - Recovers costs through vendors and subscribers
 - Vendors and buyers pay transaction fee (NOT farmers)
 - Minimizing costs, maximizing benefits

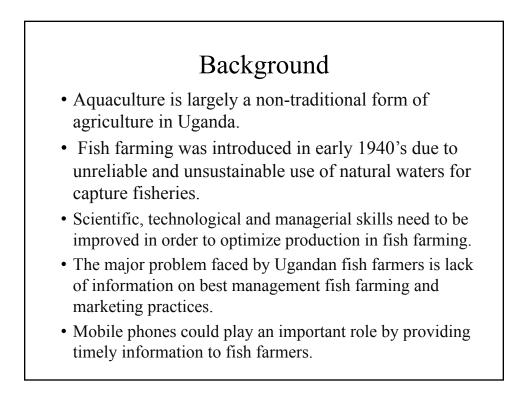
Functional Leader(s) Interface with farmers Several different models Leading farmer One or more leading farmers per district? Android phone Support colleagues Technical specialist Full-time Community Knowledge Worker CKW Ambassador Farmer Other names One per district Mediator, organizer, promoter, facilitator

Technical Assistance

- Contact fellow fish farmers for guidance
- Gain knowledge on crops, livestock
- Extension officers not always available to help

Farmer's own words

- "Through mobile phones, I have been able to to call fellow fish farmers that have been in the business or contact the middle men to locate for market..."
- "Mobile money helps us to save small amounts of money, receive payments quickly in times of need and pay for agricultural inputs, make mobile payments, replace costly traditional transfer services and reduce the need to travel long distances to collect funds. Before the introduction of mobile-money, we used to waste too much time moving to financial institutions to make payments or to receive money. However the costs and taxes associated with it are high"
- "We have more than 100 fish farmers in our district but we have only one district Fisheries Officer to serve both fish farmers and fishermen -yet, farmers have diverse questions which an Officer may not handle even if he reached them since he is not a trained personnel"

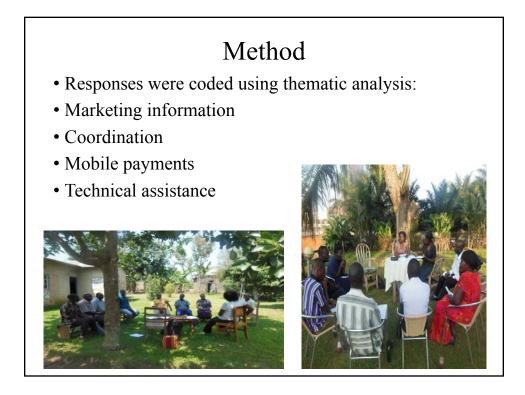

Mobile Use by Farmers in Aquaculture

- Reducing coordination costs
 - Arrange for fish farming inputs
 - Receive information from other fish farmers
 - Provide monetary savings

Focused Group Interviewers with Farmers

Conducted to understand use of mobiles in fish farming:

- Five Districts of Uganda: Masaka, Mukono, Mpigi, Bushenyi and Kalungu.
- 48 small- to medium-size farm holders .
- Digitally recorded and transcribed in English.
- Semi-structured questionnaires were used.
- Fish farmers were recruited for their participation was voluntary through the help of Grameen Field Officers and Community Knowledge Workers (CKWs).

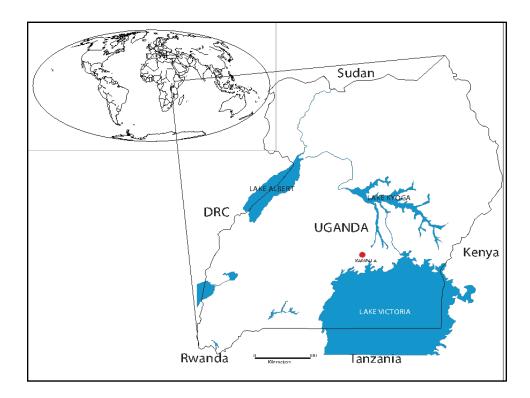


Method Respondents were asked, against pre-identified challenges, to indicate their extent using a 4-point rating scale: 1= not at all, 2= low, 3= medium 4= high Responses were computed and ranked by developing a Problem Facing Index (PFI). Responses were measured using the following formula: *Problem Facing Index (PFI) = (PH×3) + (PM×2) + (PL×1) + (PN×0)*Thus, PFI of an item could range from 0 to144, where 0 indicated no problem at all and 144 indicated high

extent problem faced.

Findings						
Table 1: Problems faced by fish farmers using mobile phones						
Problems in using mobile phones	score	Rank				
High calling rates	144	1				
Lack of adequate calling credit	135	2				
Poor battery systems	96	3				
Poor network	70	4				
Poor battery systems	62	5				
High maintenance costs	48	6				
lack of internet applications	33	7				
Lack of adequate knowledge on mobile use applications	16	8				

Findings				
Table 2: Interests and needs of fish farmers				
Farmer's needs	Rank order			
Market information	1			
Feeding procedures	2			
Pond management	3			
Water quality management	4			
Fish health information	6			
Breeding information	7			
Fertilizer application	8			
Brood stock management	9			

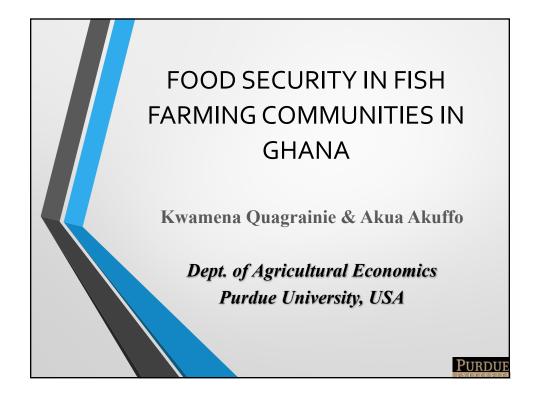

Discussion

• Cell phone use is common among fish farmers in Uganda

• Government fisheries officers and aquaculturalists are unable to meet the needs of all fish farmers.

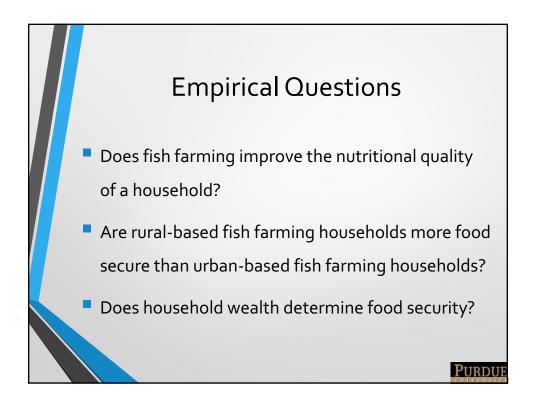
- Intermediary farmers play an important role:
 - Connecting producers to markets and suppliers.
 - Providing information regarding fish farming
- Farmers are anxious to use mobile phone applications

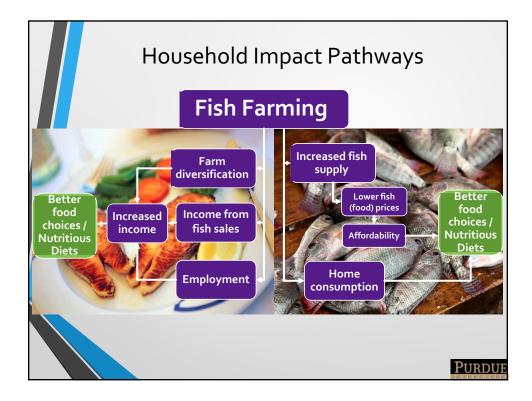
• Market information, quality seeds, feeding procedures, pond management, fish diseases, breeding, water quality management and predator control are most needed by fish farmers.

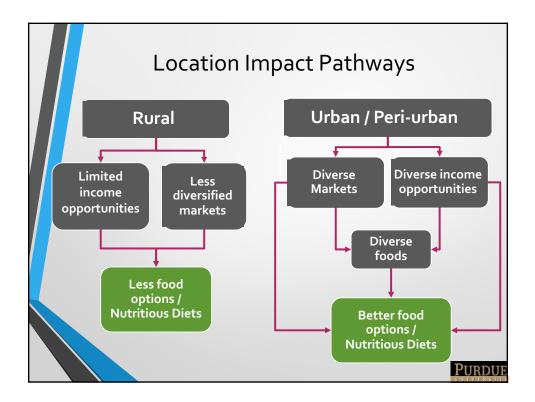

An assessment of household food security in fish farming communities in Ghana

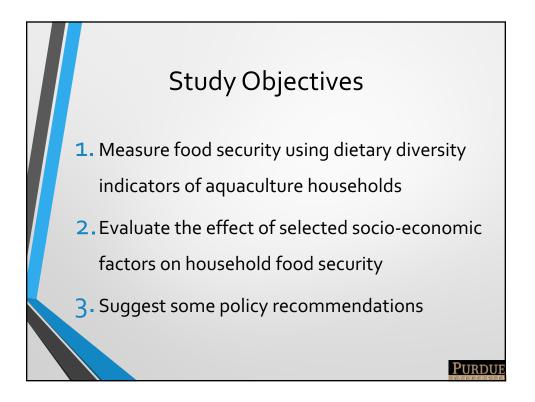
Kwamena Quagrainie* and Akua Akuffo Department of Agricultural Economics Purdue University West Lafayette, Indiana <u>kquagrai@purdue.edu</u>

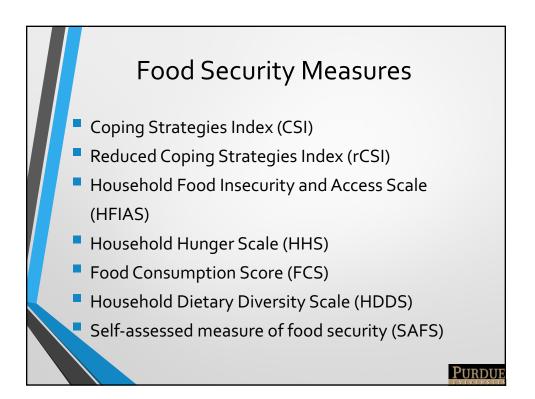
Fish is an important source of protein and essential micronutrients for many African households. Therefore, participation in aquaculture could have food security implications both directly through fish consumption, and indirectly through income effects. Food security can be assessed at different levels, i.e., nationally, regionally, and at the household levels. This study looked at the household level where food security can be characterized by nutritional adequacy and dietary diversity. Given the importance of fish in the Ghanaian diet, this study examined the impact of fish farming on household food security. The objectives of the study were to (1) measure household food security (dietary diversity and nutrient adequacy) using WFP's Food Consumption Score (FCS), and (2) assess the determinants of household food security. Data was collected from two regions in Ghana, i.e., Ashanti and Brong-Ahafo. The FCS was measured as a sum of the weighted frequencies of various food groups consumed in a week. The food groups included cereals and tubers, pulses, vegetables and fruits, meats and fish, sugar, milk, and condiments.

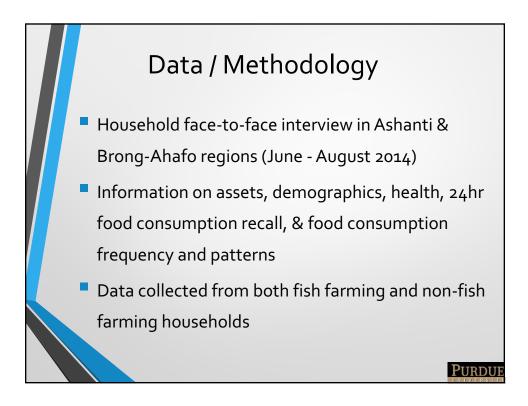

The study evaluated households engaged in fish farming as well as non-fish farming households (control group). The average FCS value for fish farming households was 72 while that of non-fish farming households was 69 but the difference is not statistically significant. A two stage least squares regression (2SLS) estimation method was used to assess the determinants of *FCS*, which included *fish farming participation*, *location* (*peri-urban vs rural*), *farming experience*, *number of years of mother's education*, *number of children at home*, and *household wealth* (*proxy for household income*). *Technical support* was used as instrument to control for endogeneity of the *fish farming participation* variable. Results from the 2SLS estimation showed that *fish farming participation*, *peri-urban location*, *mother's education*, *and number of children at home* are very strong predictors of household nutritional adequacy and dietary diversity in fish farming communities. The impact of fish farming could be attributed to both fish consumption and the income effect. An educated mother probably uses her knowledge of nutritional foods to purchase the right kinds of foods for the household, while households located in peri-urban areas have better opportunities in terms of income generating activities, larger markets and food delivery systems than rural areas.

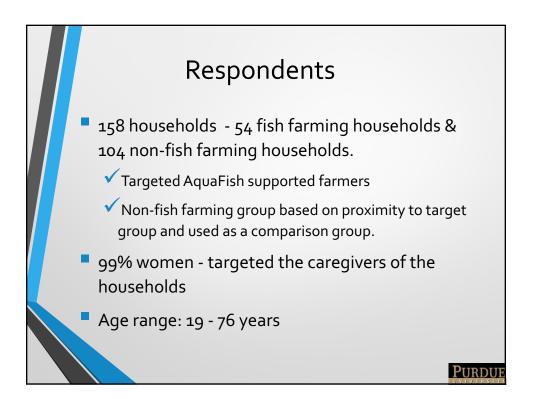

To assess any differences in household wealth on food security, the study tested for potential non-linear relationships by adding a quadratic household wealth variable. The variable was found to have a positive relationship with food security. This appears to suggest that wealthier households, usually the middle to higher income class in the fish farming communities, make better dietary quality decisions for the household compared to households in the low income class.





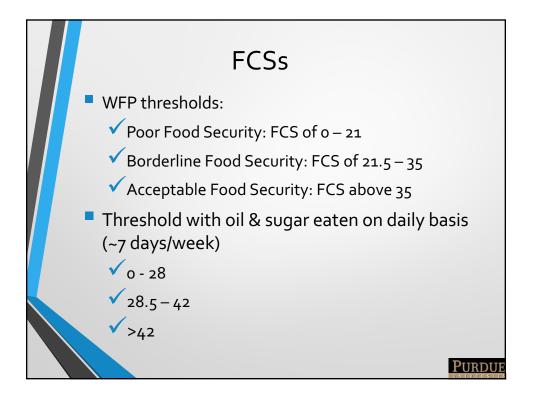


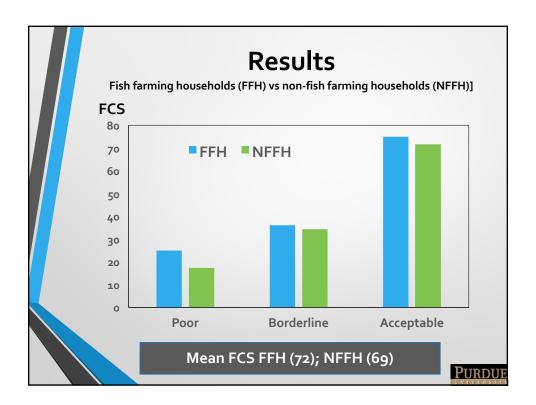


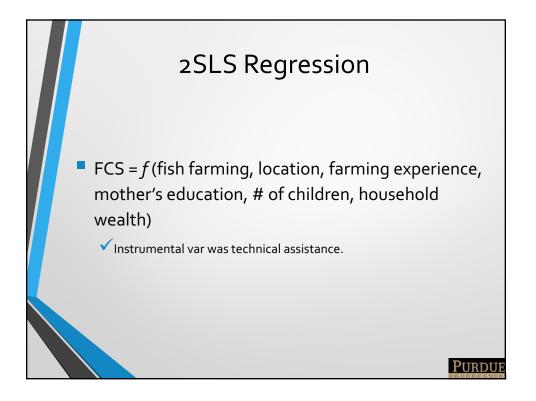


Food Consumption Score (FCS): Sum of the weighted frequencies of the various food groups consumed:

$$FCS = \sum w_i f_i$$

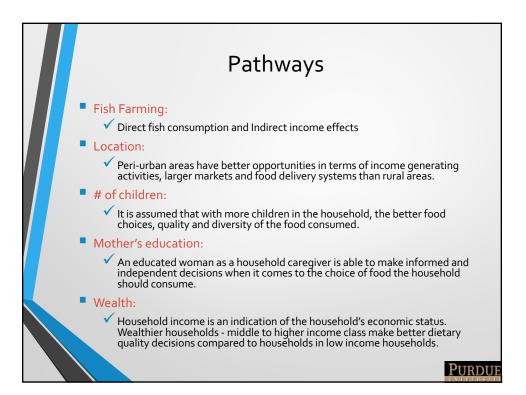

 w_i = weight or the nutritional value of food group *i*.


 f_i = frequency of food consumption of food group *i* (number of days in a week the food group is consumed).

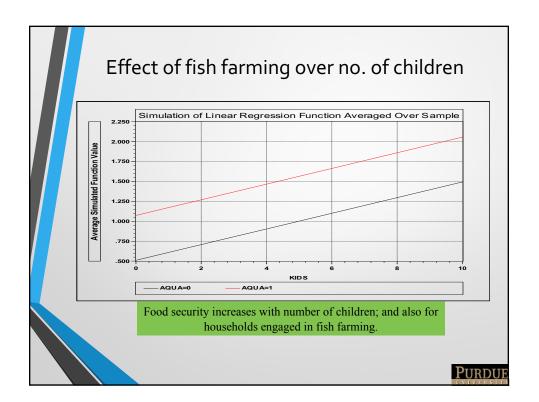

'i' = food groups - cereals and tubers, pulses, vegetables and fruits, meats and fish, sugar, milk, & condiments.

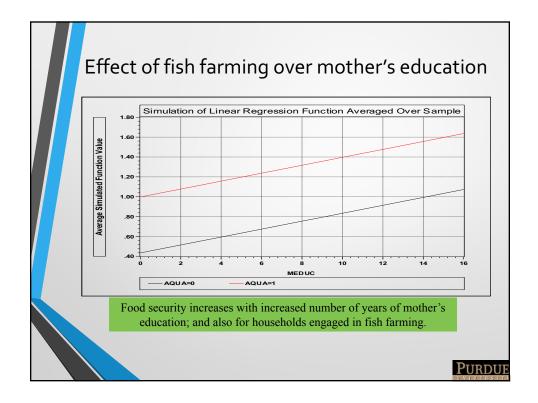
PURDUE

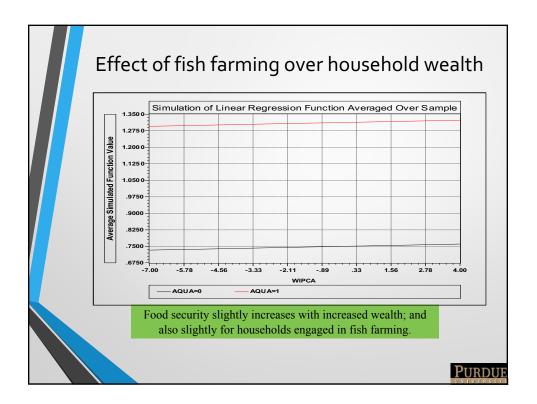
WFP Food Groups and Weights					
Food Items	Food Groups	Weights			
Maize, maize porridge, rice, sorghum, millet, pasta, bread, other cereals, Cassava, potatoes and sweet potatoes	Cereals and Tubers	2			
Beans, peas, groundnuts, cashew nuts and other nuts	Pulses	3			
Vegetables, leave and fruits	Vegies and fruits	1			
Red meat, poultry, eggs, fish	Meat and fish	4			
Milk, yoghurt and other dairy products	Milk	4			
Sugar and sugar products	Sugar	0.5			
Oils, fat and butter	Oil	0.5			
Condiments	Condiments	0			
	-	PURDUE			



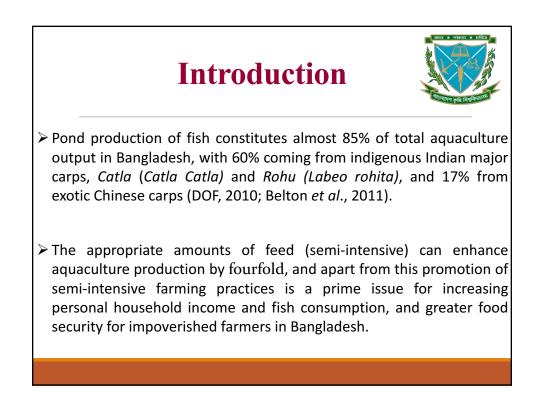





		2SLS F	Regre	ssion		
		Coeff	Std. Er	t	95% C I	
	Fish Farm	0.514	0.056	9.15	0.404	0.624
	Peri-Urban	0.341	0.058	5.87	0.227	0.454
	Experience	-0.08	0.008	-0.98	-0.025	0.008
	Mother's Ed	0.042	0.006	7.26	0.030	0.053
	# of children	0.104	0.016	6.42	0.073	0.136
	Wealth Index	0.008	0.009	0.93	-0.009	0.025
						Duppu


	2	2SLS F	Regre	ssion		
		Coeff	Std. Er	t	95% C I	
	Fish Farm	0.562	0.058	9.67	0.448	0.676
	Peri-Urban	0.299	0.059	5.08	0.184	0.415
	Experience	-0.018	0.009	-1.99	-0.037	0.000
	Mother's Ed	0.040	0.006	7.07	0.029	0.051
	# of children	0.098	0.016	6.10	0.067	0.130
	Wealth Index	0.003	0.009	0.29	-0.015	0.020
	WI squared	0.016	0.006	2.58	0.004	0.028
						PURDUE

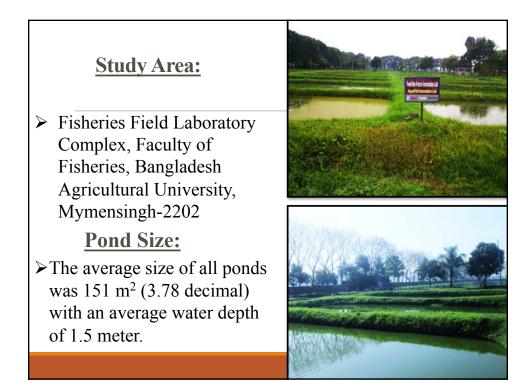
Production and economic benefits of reduced feed inputs and addition of Indian carp (Rohu) on Nile tilapia growout in ponds


Mst. Kaniz Fatema*, Md. Abdul Wahab, S.A.S.A. Tahmid, Amit Pandit, S. M. Masud Rana, Shahroz Mahean Haque, and Russell J. Borski Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh ¹Department of Biology, North Carolina State University, Raleigh, NC, USA kanizhossain@gmail.com

The aim of these studies was to determine if reductions in feed inputs and introduction of a native Indian carp, Rohu (Labeo rohita), can increase economic benefits of tilapia culture in earthen ponds in Bangladesh. An on-station pond trial was carried out for 150 days at the Fisheries Field Laboratory, Bangladesh Agricultural University, Mymensingh, Bangladesh. Ponds consisting of four treatments (T1, T2, T3, and T4) with four replications each were stocked with sex-reversed Nile tilapia (*Oreochromis niloticus*, 5 fish/m²) without (T1) or with (T2) addition of *Rohu* (0.25 fish/m²) and fed a full daily ration of feed (CP – 35% protein; 10-3%) body weight/day). Ponds were fertilized weekly (28 kg N and 5.6 kg P ha/week) in the other treatments and tilapia were grown in the absence (T3) or presence of Rohu (T4) at half the daily feed ration as T1 and T2. Pond water temperature, transparency, dissolved oxygen, nitratenitrogen (NO₃-N), nitrite-nitrogen (NO₂-N), ammonia-nitrogen (NH₃-N), phosphate-phosphorus (PO₄-P) and chlorophyll-a did not vary among treatments, while pH was slightly lower in T1 than the other treatments, but well within the suitable range for tilapia growth. A total of 27 genera of phytoplankton and 12 genera of zooplankton were identified from the pond water samples. Total phytoplankton levels were highest in the T4 and T3 groups. The survival rates (%) of tilapia were 81.06 ± 1.03 , 76.89 ± 1.28 , 76.24 ± 2.06 and 75.29 ± 2.45 in T4, T3, T2, and T1 groups, respectively. The specific growth rate (% day⁻¹) of tilapia was higher in the T3 (1.87 \pm 0.00) and T4 (1.85 \pm 0.03) than the T2 (1.76 \pm 0.05), and T1 (1.71 \pm 0.06) groups (p < 0.05). Feed efficiency was significantly better in the T3 and T4 groups relative to those treatment fish fed the full ration (p < 0.05) with feed conversion ratios of 0.49 ± 0.03 , 0.47 ± 0.03 , 1.13 ± 0.11 and 1.23 ± 0.16 for the T4, T3, T2, and T1 groups, respectively. Gross production of tilapia was higher in the T4 $(5,385.23 \pm 276.98^{\circ} \text{ kg ha}^{-1})$ followed by T3 $(5,340.62 \pm 156.47^{\circ} \text{ kg ha}^{-1})$, T2 $(4440.99 \pm 440.04^{b} \text{ kg ha}^{-1})$ and T1 (4089.83 ± 518.46^{b}) groups, respectively. Rohu gross production was similar among the T2 and T4 groups. A significantly higher net return (BDT 743,977 ha⁻¹ with benefit cost ratio of 2.92) was found in T3 followed by T4 (BDT 673,750 with benefit cost ratio of 2.72), T2 (BDT 286,469 ha⁻¹ with benefit cost ratio of 1.49) and T1 (BDT 226,675 ha⁻¹ with benefit cost ratio of 1.37) groups, respectively. Based on the higher net return and benefit-cost ratio, it may be concluded that fertilization with half feeding was substantially more cost effective over standard full feeding for growout of tilapia. Moreover, tilapia growth was little impacted by reducing feed by half. It would also appear that addition of Rohu had little impact on growth of tilapia, but could provide an additional source of income for tilapia farmers.

Production and economic benefits of reduced feed inputs and addition of Indian carp (ROHU) on Nile tilapia growout in ponds

Mst. Kaniz Fatema^{*}, Md. Abdul Wahab, S. A. S. A. Tahmid, Amit Pandit, S. M. Masud Rana, Shahroz Mahean Haque, and Russell J. Borski



Introduction

- A significant hurdle for the implementation of semi-intensive farming is the cost of feed, comprising up to 50-70% of total costs. Further, as local feed formulations often have low protein content, farmers compensate by overfeeding their fish, leading to poor water quality.
- Tilapia-carp farming under reduced feeding will hopefully produce greater production yields with less cost, thereby significantly increasing economic profitability for this endeavor.
- This investigation directly targets the improvement of household income for small-scale tilapia farmers by generating meaningful cost savings in feed.

	Researc	h Design		
Parameter	Treatment 1	Treatment 2	Treatment 3	Treatment 4
Rohu (<i>L. rohita</i>)	0	25 (0.25/m ²)	0	25 (0.25/m ²)
Tilapia (<i>O niloticus</i>)	500 (5.0/m ²)			
Fertilization	0	0	4:1 (N:P)	4:1 (N:P)
Feeding Protocol	100% daily	100% daily	50% daily	50% daily
Replicates (n)	4	4	4	4
Pond Numbers	12, 13, 15, 27	10, 11, 16, 26	17, 21, 23, 24	14, 18,22, 25

Feeding								
 Formulated feed (30% CP) were supplied initially at 100% level for treatment 1 and 2 (see table below) and 50% level for treatment 3 and 4 every day according to the schedule below: Table Suggested tilapia feeding rates as percentage body weight per day for optimum feed conversion efficiency. 								
,	Produ	uction system						
Fish weight (g)	Intensive	Semi-intensive						
0-15	15.0	10.0						
15-60	8.0	5.0						
60-100	5.0	3.0						
100-200	3.0	2.0						
200-300	2.25	1.5						
300-500	2.0	1.4						
500 +	1.6	1.3						
Source: Aquanutro 2002.		and a state of the						
	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE							

Pond Fertilization:

Except Treatment-1 and 2, all ponds of treatments 3 and 4 were fertilized with urea and triple super phosphate (TSP) at the rates of 4:1 as N: P.

Fish Sample Collection

Growth parameters (length and weight) were monitored at 2-weeks interval. Feeding rate was adjusted accordingly based on the biweekly sampling.

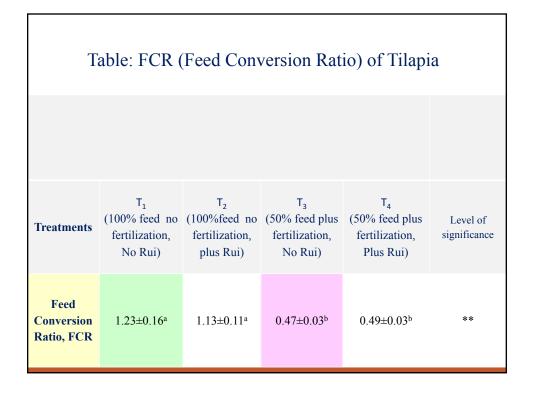
Analysis of Production Parameters:

The following production parameters were collected for further economic analysis:

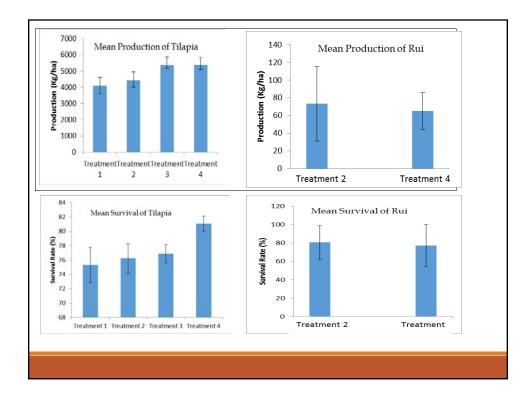
- i. Specific Growth Rates (SGR).
- ii. Feed Conversion Ratio (FCR).
- iii. Total fish yield (kg/ha).

- iv. Water quality for all treatments were tested for significant differences using analysis of variance.
- v. A marginal cost-economic return were performed for all treatments using production, labor, feed, fertilizer and other input costs.

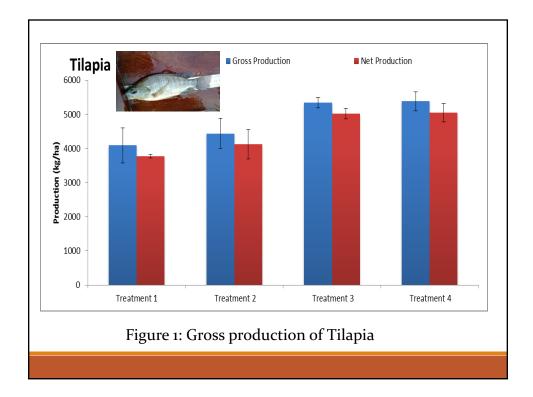
Table: Water quality analysis								
Treatment								
Parameters	T ₁ (100% feed no fertilization, No Rui)	T ₂ (100% feed no fertilization, plus Rui)	T ₃ (50% feed plus fertilization, No Rui)	T ₄ (50% feed plus fertilization, Plus Rui)	Level of significance			
	Mean±SD	Mean±SD	Mean±SD	Mean±SD				
Dissolved Oxygen (mg/l)	6.31±0.40	6.49±0.28	6.73±0.42	6.53±0.46	NS			
Temperature (°C)	23.82±0.03	23.88±0.03	23.83±0.03	23.86±0.05	NS			
pH	8.04±0.11b	8.19±0.02ab	8.26±0.10a	8.27±0.10a	*			
Transparency (cm)	12.06±2.33	11.44±0.58	10.67±0.96	10.94±1.32	NS			
Total Alkalinity (mg/l)	140.00±24.57	142.52±10.45	143.64±5.46	143.73±6.24	NS			
TDS (mg/l)	132.18±26.32	135.34±17.79	134.75±4.74	126.88±11.01	NS			
Chlorophyll-a (µg/l)	100.28±25.43	104.27±32.71	143.32±33.36	130.86±33.24	NS			
Ammonia(mg/l)	0.626±0.152	0.507±0.058	0.523±0.089	0.582±0.090	NS			
Phosphate (mg/l)	1.357±0.184	1.282±0.106	1.215±0.064	1.434±0.200	NS			
Nitrite(mg/l)	0.036±0.008	0.052±0.025	0.038±0.016	0.041±0.006	NS			
Nitrate(mg/l)	0.310±0.009	0.327±0.022	0.297±0.055	0.346±0.026	NS			

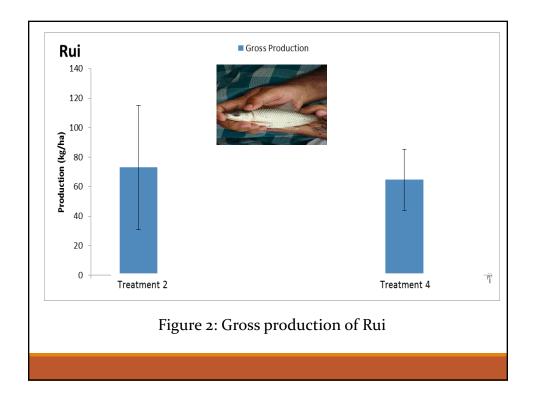

Table: Mean abundance (×10⁻³ cells L ⁻¹) of plankton population recorded from the ponds among four treatments

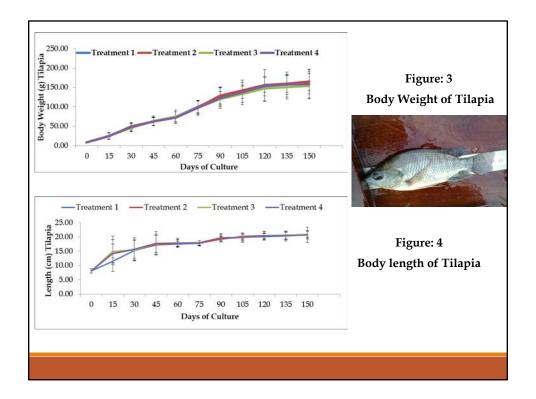
Variables	T ₁ (100% feed no fertilization, No Rui)	T ₂ (100% feed no fertilization, plus Rui)	T ₃ (50% feed plus fertilization, No Rui)	T ₄ (50% feed plus fertilization, Plus Rui)	Level of significance
Plankton (×10 ³ cells L ⁻¹)					
Bacillariophyceae	21.14±4.36 ^b	22.86±4.42 ^b	28.72±5.94ª	27.28±5.95ª	*
Chlorophyceae	27.47±3.86°	29.17±3.63b	34.31±3.09ª	33.17±2.98ª	**
Cyanophyceae	5.58±0.88°	8.53±0.88ª	6.97±1.17 ^b	7.17±0.84 ^{ab}	**
Euglenophyceae	6.72±1.62 ^b	7.86±1.04ª	6.53±0.85 ^b	5.53±1.28°	**
Rhodophyceae	1.94±0.62ª	1.39±0.33b	1.17±0.38°	1.44±0.30b	**
Total Phytoplankton	61.14±7.21°	64.47±4.52°	73.39±5.87 ^b	85.94±6.70ª	**
Copepoda	5.64±0.67	6.31±0.74	5.94±1.01	5.81±0.86	NS
Rotifera	9.39±2.36	10.06±2.36	12.72±4.26	11.19±1.88	NS
Cladocera	2.44±1.07	1.92±0.78	1.97±1.19	2.08±0.98	NS
Protozoan	0.61±0.25ª	0.28±0.15°	0.67±0.41ª	0.39±0.28 ^b	*
Total Zooplankton	15.28±1.22	16.58±0.86	20.39±2.32	25.17±3.68	NS
Total Plankton	76.42±7.87	81.06±5.00	93.78±7.96	111.11±9.76	NS


Table: A	bundance	of	Benthos	in	Different	Treatments	during	the
Experime	ental Period	d						

	No. of Benthos in Different Treatments (no./m ²)						
Group of Benthos	T ₁ (100% feed no fertilization, No Rui)	T ₂ (100% feed no fertilization, plus Rui)	T ₃ (50% feed plus fertilization, No Rui)	T ₄ (50% feed plus fertilization, Plus Rui)	Level of Significance		
	Mean±SD	Mean±SD	Mean±SD	Mean±SD			
Oligochaeta	217.28±45.80	206.58±36.14	195.06±42.03	188.89±39.28	NS		
Chironomid Larvae	386.83±77.06a	316.87±56.96b	257.61±50.24c	261.73±73.66c	**		
Mollusks	69.68±27.76	56.79±14.70	70.78±20.49	53.91±26.13	NS		
Unidentified	22.50±15.24	21.81±12.76	17.70±18.41	9.05±9.09	NS		


		th and Produ		-	
Variables	T ₁ (100% feed no fertilization, No Rui)	T ₂ (100% feed no fertilization, plus Rui)	T ₃ (50% feed plus fertilization, No Rui)	T ₄ (50% feed plus fertilization, Plus Rui)	Level of significance
	Mean±SD	Mean±SD	Mean±SD	Mean±SD	
Mean Stocking Weight (g)	8.34 ±1.85	8.34 ±1.85	8.34 ± 1.85	8.34 ± 1.85	NS
Mean Harvesting Weight(g)	$108.96 \pm 9.82 \ ^{b}$	$116.99 \pm 9.04^{\rm b}$	$137.69 \pm 2.04 ^{\rm a}$	132.57 ± 5.42^{a}	**
Mean Weight Gain (g)	$100.62 \pm 9.82 \ ^{b}$	108.64 ± 9.04 ^b	129.35 ± 2.04 ^a	124.23 ± 5.43 ^a	**
Survival Rate (%)	75.29 ± 2.45 ^b	76.24 ± 2.06 ^b	76.89 ± 1.28 ^b	81.06 ± 1.03^{a}	*
Specific Growth Rate, SGR	$1.71\pm0.06^{\rm b}$	$1.76\pm0.05^{\rm b}$	$1.87\pm0.00^{\rm a}$	$1.85\pm0.03^{\rm a}$	*
Gross Production (kg ha ⁻¹)	4089.83 ± 518.46^{b}	$4440.9 \ 9 \pm 440.04^{b}$	5340.62 ± 156.47^{a}	5385.23 ± 276.98^{a}	*
Net Production (kg ha ⁻¹)	3777.52 ± 52^{b}	4124.6 7± 431.38 ^b	$5017.16 \pm 151.46^{\rm a}$	5046.53 ± 272.30^{a}	*




	Growth and Production of <u>Rui</u>								
Variables	T ₁ (100% feed no fertilization, No Rui)	T ₂ (100% feed no fertilization, plus Rui)	T₃ (50% feed plus fertilization, No Rui)	T₄ (50% feed plus fertilization, Plus Rui)	Level of significance				
		Mean±SD		Mean±SD					
Mean Stocking Weight (g)	-	26.6 ± 8.5	-	26.6 ± 8.5	NS				
Mean Harvesting Weight(g)	-	61.6 ± 13.76	-	59.93 ± 2.04	NS				
Mean Weight Gain (g)	-	35 ± 13.76	-	33.33 ± 2.04	NS				
Survival Rate (%)	-	80.56±18.44		77.29 ± 22.94	NS				
Gross Production (kg ha ⁻¹)	-	126.502 ±52.63	-	116.107 ± 35.13	NS				
Net Production (kg ha ⁻¹)	-	73.12 ± 42.14	-	64.78 ± 20.75	NS				
Specific Growth Rate, SGR	-	0.55 ± 0.14	-	0.54 ± 0.02	NS				

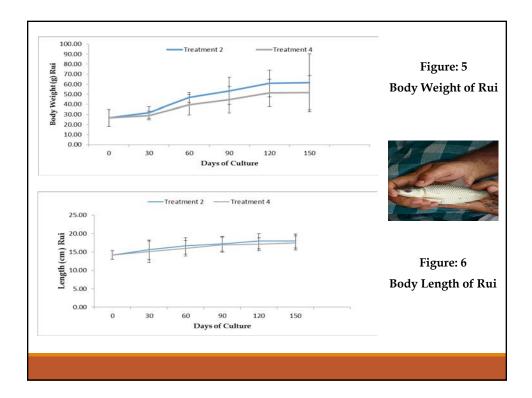


Table: Economic Analysis of <u>Tilapia and rui</u> Production								
Expenditure(Tk pond ⁻¹)	T ₁ (100% feed no fertilization, No Rui)	T ₂ (100% feed no fertilization, plus Rui)	T₃ (50% feed plus fertilization, No Rui)	T ₄ (50% feed plus fertilization, Plus Rui)	Level of significance			
	Mean±SD	Mean±SD	Mean±SD	Mean±SD				
Fingerlings cost (Tk ha-1)	99,505.71± 1,411.43 ^b	1,11943.93 ±1,587.86 ª	1,00917.14±1,411.43 ^b	1,12737.86±1,833.50ª	**			
Feed cost (Tk ha-1)	1,18210.1421±4,309.44ª	1,18210.1421±4,309.44 ª	62,777.92± 1,074.71b	60,407.64± 981.23 ^b	**			
Lime Cost (Tk ha ⁻¹)	1,885.58±935.91	1,389.38±1273.01	1,896.61±1784.02	2,172.28±1457.26	NS			
Fertilizers cost (Tk ha-1)	-	-	6,661.74± 93.55ª	6,614.97± 108.02ª	**			
Operational cost (Tk ha ⁻¹)	42,664.53±568.91ª	43,560.18±555.06ª	26,948.17±431.08 ^b	27,244.54±747.29b	**			
Total Expenditure (Tk ha ⁻¹)	6,11,524.94±8154.32ª	6,24,362.60±7955.90ª	3,86,257.17±6178.87 ^b	3,90,505.00±10711.16 ^b	**			
Gross return (Tk ha ⁻¹)	8,38,200.68±1,16,951.37°	9,32,932.67±77,451.22 ^{bc}	11,30,234.07±86,477.25ª	10,64,254.63±89,098.58ab	NS			
Net return (Tk ha-1)	2,26,675.58±110128.31 b	2,86,469.43±95884.41b	7,43,976.95±80584.80ª	6,73,749.64±79583.97ª	**			
BCR (Benefit Cost Ratio) (Tk ha ⁻¹)	1.37±0.17 ^b	1.49±0.11 ^b	2.92±0.18 ª	2.72±0.17 ª	**			

Conclusion

- The production, the highest net return and gross return were recorded highest in treatment 4 and 3 (daily feeding 50% level and input pond fertilization).
- BCR (benefit-cost ratio) were highest at treatment 3 (also daily feeding 50% satiation level and input fertilization).
- Based on the higher net return and benefit-cost ratio, it may be concluded that fertilization with half feeding was suitable option for Tilapia and Rui polyculture where Rui could provide an additional source of income for tilapia farmers.

Treatment 2 The contribution of tilapia alone - 96.3% from gross return. The contribution of tilapia alone - 313.54% from net return. Marcon & The contribution of Rui alone - 1.36% from gross return. The contribution of Rui alone - 4.42% from net return.

Treatment 4 The contribution of tilapia alone - 98.91% from gross return. The contribution of tilapia alone - 156.24% from net return. & * The contribution of Rui alone - 1.1% from gross return. The contribution of Rui alone - 1.72% from net return.

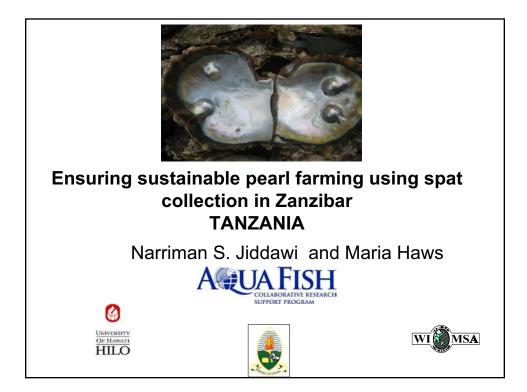
About Labor cost:

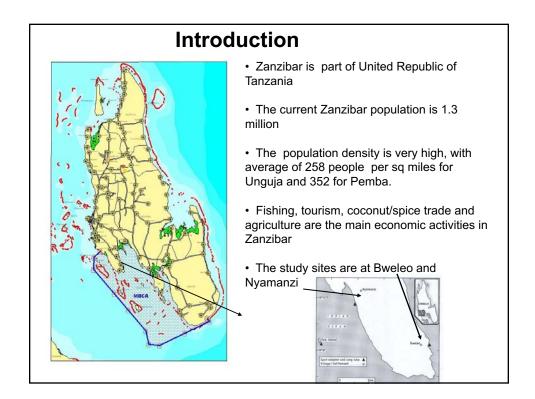
Among four treatments 3 labors work in T1and there per month income is – BDT 2844.30 and total BDT 14221.51.

3 labors also work in T2 and there per month income is - BDT 2904.012 and total BDT 14520.06.

2 labors work in T3 and there per month income is – BDT 2694.82 and total BDT 13474.09 $\,$

2 labors also work in T4 and there per month income is – BDT 2724.45 and total BDT 13622.27.


About Labor cost:


As the area of treatment 1 and 2 is greater than treatment 3 and 4 so we had to involved labor in a ratio of (3:3:2:2). Moreover the feed used in treatment 1 and 2 is greater than treatment 3 and 4 and other pond management is frequently done in treatment 1 and 2 so there the labor cost had doubled than T3 and T4.

Sustainable pearl farming in Africa using new spat collection techniques

Narriman. S Jiddawi and Maria C. Haws

Marine pearl culture is an important aquaculture industry in the world. Currently, there is a growing interest in pearl culture production among Tanzanian coastal communities primarily due to the opportunity as an alternative income generation activity and also as a way of using the ocean in a sustainable manner. Attempts to culture pearls have been successful but in Zanzibar and other areas but spat collection is required for long-term sustainability. Spat collection experiments were therefore initiated in two villages (Bweleo and Nyamanzi). Community members were trained on how to use these various spat collection techniques and how to maintain them until the oysters are ready for seeding. Different types of spat collectors were used and this will be elaborated in the report. The targeted species were *P. margaritifera* and *Pteria* spp. Based on the results of this study, it is possible to obtain good number of pearl oyster spat and grow them. It is also possible to produce relatively good quality half-pearls within a short period of 9 months using *P. margaritifera*. The establishment of such an industry would provide much needed alternate income activity among Tanzanian coastal communities while serving to utilize coastal resources in sustainable way. The women participants were also involved in the experiments and also were provided more training on entrepreneurship skills.


<text><list-item><list-item><text>

Introduction

- Women in coastal Zanzibar have always depended on the intertidal area for economic activities e.g collecting clams, oysters, mussels and cockles for food or commercial purposes.
- However, uncontrolled harvesting has contributed to a decline in bivalve populations and increased poverty.
- Half pearl farming and jewellery making has helped to increase income and improve management of marine resources in the first trial sites.
- However this activity needs to be sustainable in order for the women to continue to earn their income.One way is ensuring the availability of spat which can be grown to adult size and used for seeding.

Obtaining pearl oysters

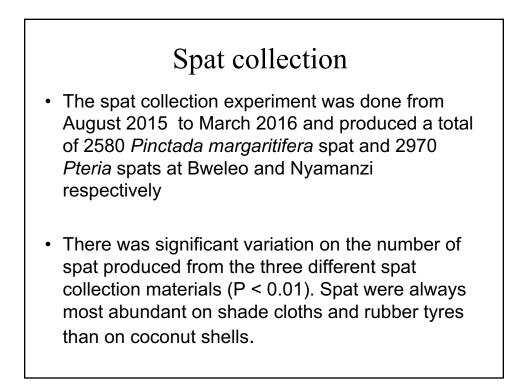
- Pearl oysters can be:
 - Collected from the reef as either adults or young pearl oysters (called spat), The farmers usually had to go to the reefs to collect adult oysters.
 - In Zanzibar, it is common to see small pearl oysters attached to wooden stakes, used to grow shellfish or on seaweed
 - Putting artificial material in water where small pearl oyster larvae can set on the material as spats, grow and then be removed to be implanted was thus found to be a feasible idea

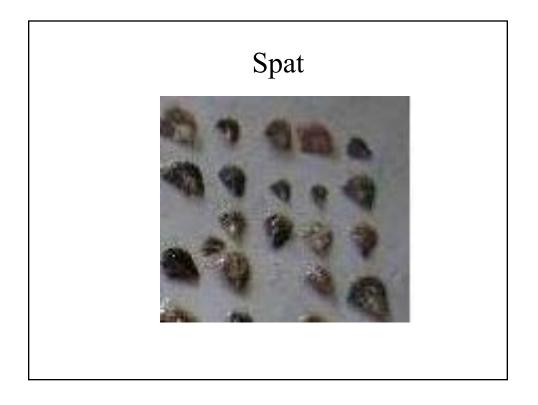
Spat collection

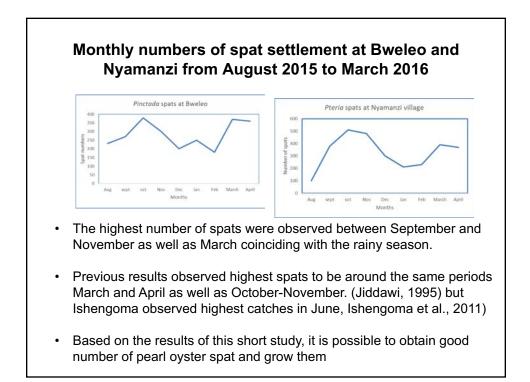
- All pearl farms need a steady supply of young pearl oysters (spat) to keep the farm in operation.
- Spat collection is the process of attracting larval pearl oysters onto artificial substrates, a process commonly used in the pearl faming industry because it is cheap and simple than using a hatchery

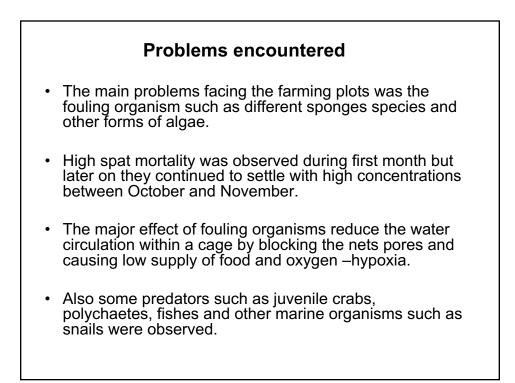
Spat collection

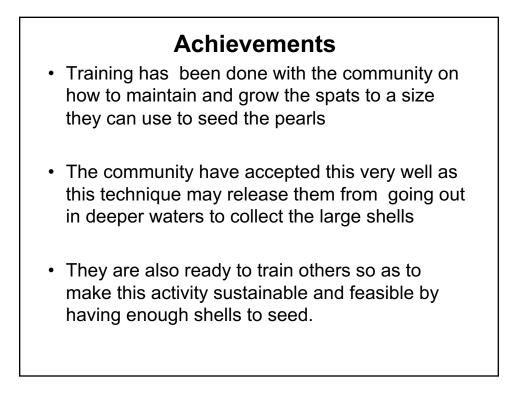
- Usually the spat collectors are hung in areas where there is the presence of enough adult pearl oysters in the surrounding waters to reliably produce high numbers of spat
- Spat collection occurs when any material designed to attract spat settlement is placed in the water and tended. Properly designed spat collectors also protect the small spat while they grow


Spat collection


- It is important to select the correct type of material, choose the right areas, place the collectors into the water at the right time, and provide proper maintenance of the collectors and the lines.
- In this his experiment we used mesh bags cloth, coconut shells and rubber tryres and hung on submerged mainlines anchored to the bottom and suspended with floats.




Spat collection


- About a month after the collectors have been set out, they were checked and some were found hiding beneath the shells and inside the clothing mesh bags
- The choice of material is very important as it will influence the likelihood of pearl oyster larvae setting upon it, and the ease and cost of collecting spat.
- Pearl oyster larvae set on a wide variety of materials in nature, but appear to prefer dark materials and the undersides of hard objects, which may offer protection.

AquaFish Technical Session 5 Innovations in Smallholder Aquaculture Technology: AquaFish Research in Capacity Building and Gender

Improving the well-being of Bangladeshi women mud crab culturist using a value chain analysis

Wilfred Jamandre*, Upton Hatch, Sattyananda Biswas, Emilia Quinitio, Md. Abdul Wahab, Sadika Haque, Russell Borski Department of Agricultural Management, Central Luzon State University, Muñoz, Nueva Ecija, Philippines

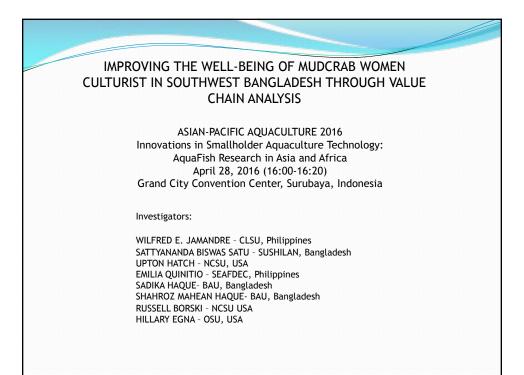
This study had analysed the value chain of mud crab in Southwest Bangladesh and identified areas to improve the livelihood opportunities of women crab culturists in these region. Tracer methodology was employed to map the existing value chain of mudcrab spanning three districts, namely Khulna, Satkhira and Bagerhat. A total of 156 respondents were interviewed composed of 6 crab collectors; 45 mudcrab culturists; 6 assemblers (3 in local/district-based depots and 3 in national or Dhaka-based depots), 3 soft-shelled crab processors and exporters of live crabs in Dhaka; 1 exporter association (with 86 active members) in Dhaka and 10 consumers. Combinations of individual and panel interviews as well as focus group discussions were employed to gather data and information. Secondary data were used extensively to establish a good understanding of the mudcrab industry. These include data on volume and value of production, yield, prices and other market information, among others. Finally, key informants from relevant agencies such as the Bangladesh Ministry of Fisheries and Livestock, Department of Forestry, among others were also interviewed.

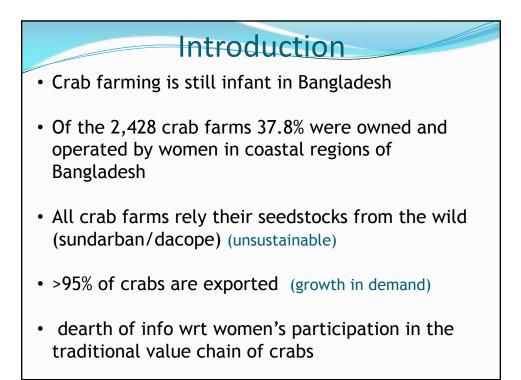
The mudcrab industry in Bangladesh had become an important source of income and employment of the fishery sector of the country. Export value of live crabs is now ranked 9th and the 3rd fastest growing fishery product in the country. The major destination of live crabs is the export markets whose demand is growing overtime (include China, Singapore, Malaysia, etc.). But domestic demand is limited to the non-Muslim consumers and foreign tourists. Consumption of crab is not yet accepted by the majority of Bangladeshi albeit not forbidden by their faith.

Marketable live crabs are collected in the wild but "exploitation" made the volume of catch and consistency of crabs' quality become unsustainable. Hence, crab culture and fattening is recently emerging polyculture fishery product in the country.

The crab's value chain is composed of crab collectors, crab growers/culturists/fatteners, assembler-agents at local, district and national depots, exporter-processors and end users. The occasional participation of retailers and institutional buyers in the value chain made them insignificant players.

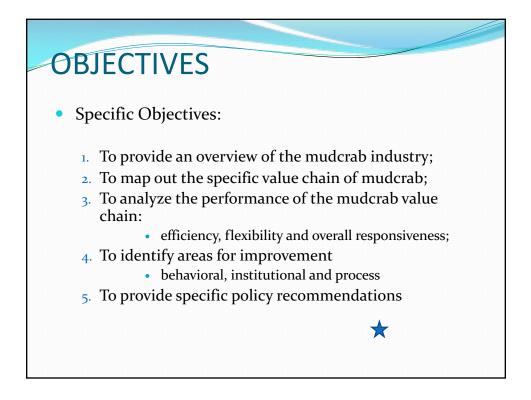
The schedule of volume, prices and product requirements (grade, size, sex, gonad and claw conditions) are provided by the exporters through the assembler-agents. Regular export schedule is done thrice a week. To meet any volume or "quota" requirements, assembler-agents


extend credit (dadon) or advanced payments to crab collectors and crab growers as procurement strategy. Almost all other transactions are settled in cash. In terms of profit shares across players in the value chain, the exporters-processors have the lion share with 57%. The assemblers in district and crab collectors followed next with respective 19% and 16%.profit shares while the local assembler and crab growers have the lowest profit shares of 4.4% and 2.4%, respectively.


Due to poor road, transportation and packaging practices, high incidence (20%) of in-transit mortality and rejects was experienced. To recoup from these losses, exporters began processing crab meats for the export markets. Other major logistical issues and concerns that hamper the overall efficiency and sustainability of the value chain, include: (a) natural sources of crabseeds are becoming unsustainable; (b) poor grow out and feeding technologies in mudcrab culture; (c) poor road conditions, packaging and handling practices; (d) limited working capital; and (e) poor processing technology.

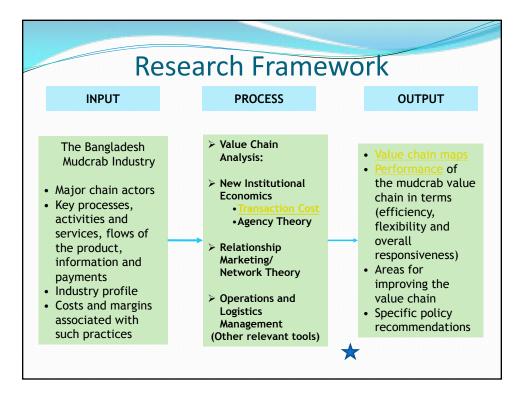
Additionally, the external influences that are harmful to the value chain include (a) frequent floods due to heavy rains; (b) poor water quality, and (c) the lack of government efforts of stimulating domestic demand for crabs.

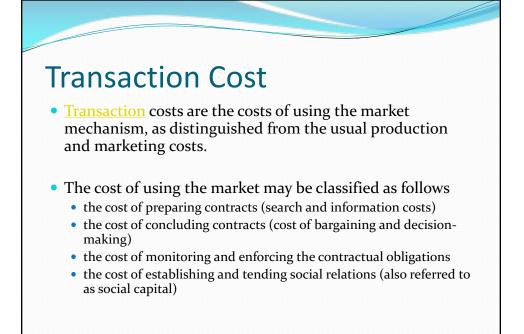
To address the above issues and concerns, the following measures are recommended: (a) establish crab hatcheries, (b) Improve cultural and value adding technologies via techno transfer and credit programs, (c) Improve product packaging and handling systems, and (d) provide efficient marketing and promotion programs.

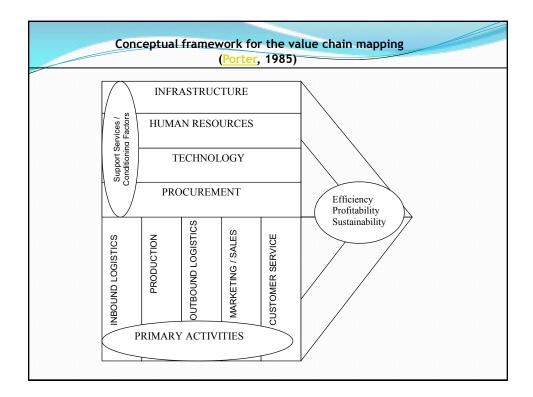


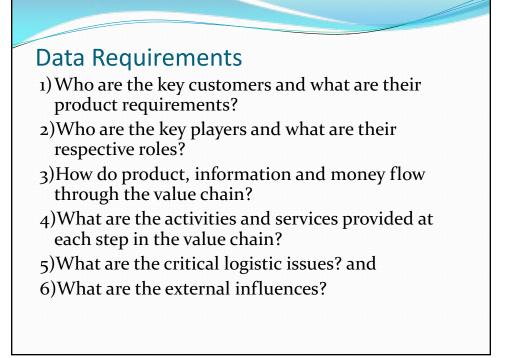
OBJECTIVES

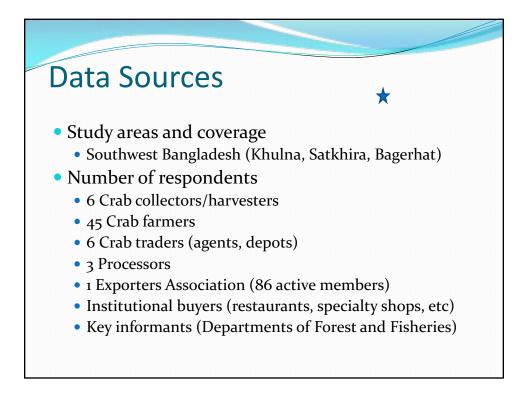
 General Objective: To assess the existing value chain of mudcrab in Southwest Bangladesh and identify areas for <u>improvement</u> (esp the participation of women)

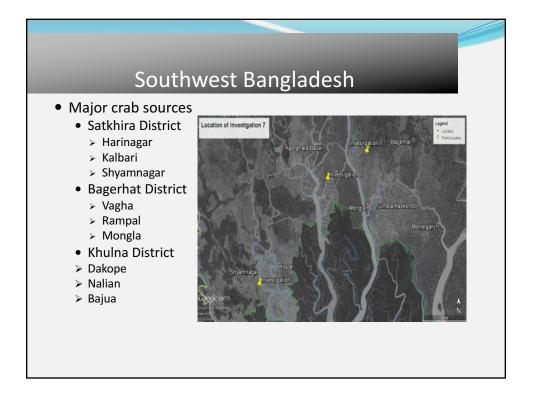


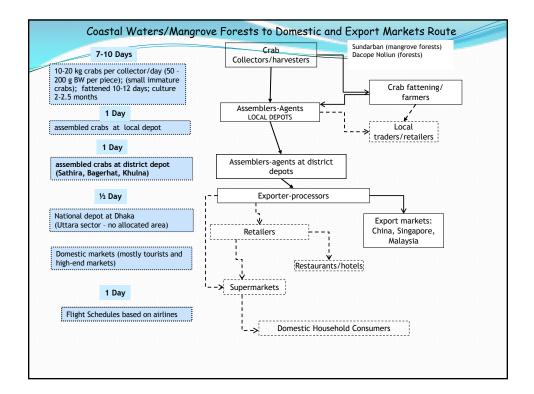



(1) Improving economic efficiency (production of goods and services were done with least costs, well-being of the sector were raised and transaction costs were reduced)


 (2) Improving business relationships (partnerships based on mutual trust and info sharing)
 (3) Improving operational efficiency (managing logistics and coordination arrangements to

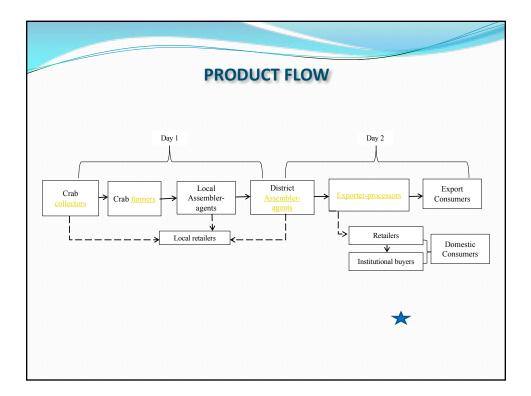

ensure reliability, product quality and delivery schedules)

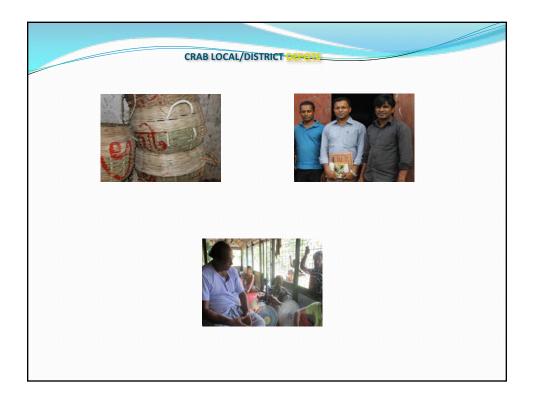


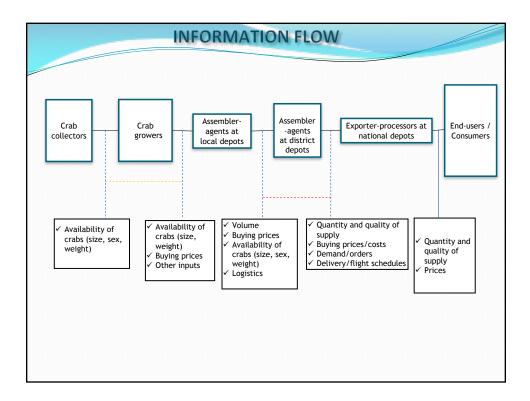

Table 1. Volum	ie of Live	2 Crab Im	ports by (Jountry o	Destina	tion		
	2009	2010	2011					
					Annual			
Country or Area		e Shares ('00		Total	Ave.	Share	Growth	Rank
Japan	31.82	18.58	12.05	62.45	20.82	19.61%	-38.38%	2
China	16.10	23.91	30.65	70.65	23.55	22.19%	38.38%	1
Korea Rep	13.49	8.62	8.41	30.52	10.17	9.59%	-19.30%	3
Canada	4.25	5.37	6.89	16.51	5.50	5.19%	27.28%	6
Singapore	5.47	5.36	5.58	16.40	5.47	5.15%	1.04%	7
USA	3.29	3.41	1.63	8.33	2.78	2.62%	-24.27%	12
France	7.58	7.12	6.62	21.32	7.11	6.70%	-6.55%	5
China,H.Kong	5.10	6.18	4.15	15.42	5.14	4.84%	-5.85%	8
Spain	8.06	7.88	8.29	24.23	8.08	7.61%	1.46%	4
China,Taiwan	4.21	4.37	4.38	12.96	4.32	4.07%	2.10%	9
Malaysia	3.11	3.02	3.17	9.29	3.10	2.92%	1.03%	10
Portugal	1.90	2.12	1.89	5.90	1.97	1.85%	0.23%	13
Italy	0.85	0.88	1.20	2.94	0.98	0.92%	19.80%	14
Thailand	3.61	2.42	2.40	8.43	2.81	2.65%	-17.01%	11
China, Macao	0.75	0.80	0.59	2.14	0.71	0.67%	-9.76%	15
Others	4.01	3.62	3.28	10.91	3.64	3.43%	-9.52%	
Grand Total	113.59	103.65	101.16	318.40	106.13	100%	-5.58%	

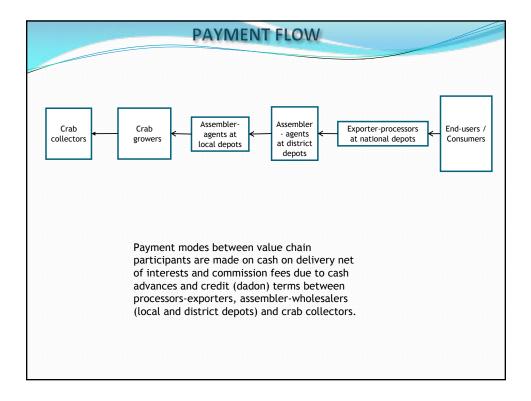
	2009	2010	2011					
Country or					Annual			
Area	Volu	ume Share (M	T)	Total	Ave.	Share	Growth	Rank
China	3,591	3,580	3,457	10,628	3,543	3.94%	-1.25%	9
Indonesia	7,743	9,347	11,815	28,905	9,635	10.72%	15.71%	3
Canada	6,292	7,859	7,155	21,306	7,102	7.90%	5.32%	5
UK	14,008	13,824	13,096	40,928	13,643	15.18%	-2.19%	1
USA	5,941	7,756	12,136	25,833	8,611	9.58%	29.01%	4
India	5,808	3,213	3,102	12,123	4,041	4.50%	16.04%	8
Myanmar	12,587	11,731	11,442	35,760	11,920	13.27%	-3.09%	2
Philippines	2,984	3,316	4,208	10,508	3,503	3.90%	12.68%	10
Bangladesh	5,147	6,890	7,044	19,081	6,360	7.08%	12.03%	6
Pakistan	3,185	6,361	5,574	15,120	5,040	5.61%	29.12%	7
France	2,252	2,051	1,946	6,249	2,083	2.32%	-4.68%	12
Australia	617	506	502	1,625	542	0.60%	-6.26%	15
Korea Rep	549	495	711	1,755	585	0.65%	11.27%	14
Viet Nam	1,597	720	830	3,147	1,049	1.17%	13.21%	13
Ireland	3,159	3,200	3,128	9,487	3,162	3.52%	-0.32%	11
Total (top 15)	75,460	80,849	86,146	242,455	80,818	89.95%	4.54%	
Others	10,147	9,602	7,349	27,098	9,033	10.05%	4.92%	
Grand Total	85,607	90,451	93,495	269,553	89,851	100.00%	4.21%	

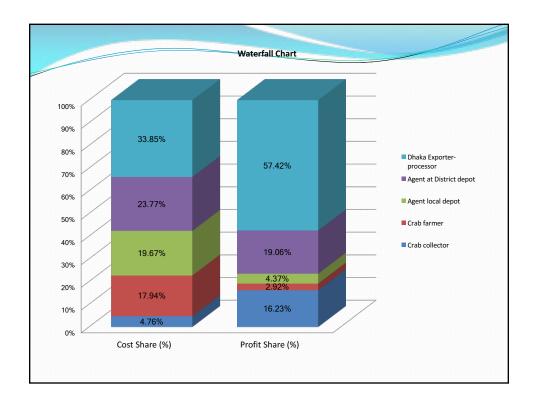
	2010	2011	2012	2013	2014	Annual			
Products			Volume (MT	.)		Average	Share	Rank	Growt
Prawn	5,714	7,120	7,060	6,679	6,504	6,615	7.78%	3	3.94%
Shrimp	39,236	40,860	35,678	37,274	34,733	37,556	44.16%	1	-2.729
Carp	4,757	8,270	11,299	7,239	2,848	6,882	8.09%	2	3.47%
Catfish	2,076	2,367	1,698	2,037	2,281	2,092	2.46%	6	4.43%
Hilsha	3,107	8,539	6,174	473 -		3,659	4.30%	5	- 11.31
Dried fish	622	1,200	1,040	1,278	2,895	1,407	1.65%	8	57.22
Live Eel	1,783	3,296	5,057	6,818	7,158	4,822	5.67%	4	44.53
Live Crab	692	1,189	710	610	549	750	0.88%	9	1.89%
Shark fin & cara	apase 954	838	2,758	2,599	2,393	1,909	2.24%	7	50.81
Others	18,702	22,790	20,555	18,963	15,762	19,354	22.76%		-3.149
Total	77,643	96,469	92,029	83,972	75,122	85,047	100.00%		0.09%


	2010	2011	2012	2013	2014				
Products		v	alue ('000 US	\$)		Average	Share	Rank	Growth
Prawn	74,132.30	96,659.53	107,029.60	92,129.18	103,068.81	94,603.88	17.70%	2	9.77%
Shrimp	113,332.67	364,964.99	321,723.19	303,516.00	384,419.33	297,591.23	55.68%	1	57.79%
Carp	9,992.84	24,296.24	30,075.91	19,690.03	7,867.91	18,384.58	3.44%	4	18.099
Catfish	6,750.73	10,482.13	7,320.21	8,357.00	9,050.91	8,392.20	1.57%	6	11.899
Hilsha	17,731.34	48,956.55	35,885.15	3,133.66	-	21,141.34	3.96%	3	19.389
Dried fish	3,579.80	4,287.80	3,519.00	4,634.26	6,611.47	4,526.47	0.85%	7	19.059
Live Eel	1,888.22	4,477.21	9,698.59	17,966.40	17,631.97	10,332.48	1.93%	5	84.289
Live Crab Shark fin &	1,486.53	3,037.55	2,479.99	3,833.37	3,590.56	2,885.60	0.54%	8	33.569
carapase	1,808.07	805.14	1,798.26	1,803.38	2,046.60	1,652.29	0.31%	9	20.41%
Others	63,056.14	80,659.86	77,229.84	78,004.99	76,041.01	74,998.37	14.03%		5.549
Total	293.758.64	638.626.99	596,759.73	533.068.27	610.328.57	534.508.44	100.00%		28.679









Sex	Grade	Weight (g/crab)	Buying Price (Tk/kg)	Selling Price* (Tk/kg)	Commissio (Tk/kg)
	XXL (2pcs/kg)	500	470	500	6
Ð	XL (3 pcs/kg)	400	370	400	5
Male	L (4 pcs/kg)	300	270	300	5
	M (5 pcs/kg)	200	170	180	2
	SM (6 pcs/kg)	150	80	90	nil
	F1 (5pcs/kg)	180	400	420	5
Female	F2 (6 pcs/kg)	145	270	350	5
Fen	F3(10 pcs/kg)	100	170	200	2

Sex	Grade	Weight (g/crab)	Shell Condition	Claw Condition	Buying Price (Tk/kg)	Selling Price* (US\$/kg)	Tk/k
	XXL (2pcs/kg)	500	Hard	Full meat	600	13.70	1,027.:
٩	XL (3 pcs/kg)	400	Hard	Full meat	475	11.85	888.7
Male	L (4 pcs/kg)	300	Hard	Full meat	375	9.70	727.5
	M (5 pcs/kg)	200	Hard	Full meat	300	8.09	606.3
	SM (6 pcs/kg)	150	Hard	Full meat	150	6.72	504.0
	F1 (5pcs/kg)	200	Hard	Full gonad	600	14.46	1,084.5
	F2 (6 pcs/kg)	180	Hard	Full gonad	400	13.36	1,002.0
Female	F3(10 pcs/kg)	150	Hard	Full gonad	300	9.52	714.0
Fer	F4 (12 pcs/kg)	80	Hard	Full gonad	275	8.50	637.5
	KS1	180	Hard	Partial gonad	225	11.12	834.0
	KS2	120	Hard	Partial gonad	150	7.50	562.5

Key Players	Issues and Concerns	Transaction Costs
Crab collectors	Harvest of marketable crabs are getting fewer and irregular. Cost of renewing permits (NOC) and other related expenses are more exorbitant. No issuances of NOC during demand peaks Limited working capital	High security risks due to the presence of lawless elements at sundarban areas
Crab fatteners	 Irregular availability of crab seeds and feeds Discounted prices due to dadon practices Limited working capital Use of traditional technology 	Growth opportunities are limited due to high search cost of market information
	Lack of formulated diet	Culture and fattening period is long (2-2,5 months)
	Product uniformity and consistency is hard to meet	
Assemblers-agents at local depots	Frequent delays in product delivery and marketing	
	High in-transit mortality (20%)	Loss of sales (lower product values)
	Poor product handling and packaging	High in-transit losses (crashed, immature)

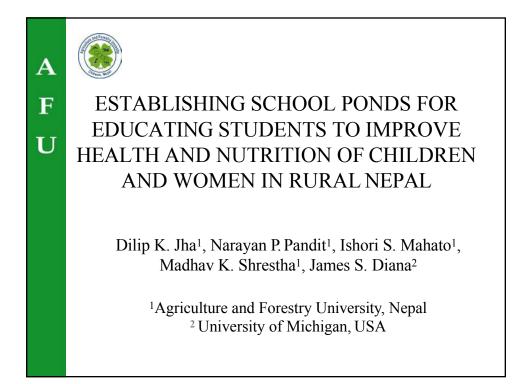
Key Players	Concerns	Transaction Cost
Assemblers-agents at district depots	Schedule of product arrival not predictable	High cost of meeting normal load capacity
	Poor handling practices	High handling losses
	 No uniform product grades and standards Difficulty in meeting desired product volume and quality 	Opportunity cost of capital due to advance payments (after 15 days)
Processors of chilled crabs	Poor product quality	Lower product value
	Limited market outlets	Expansion opportunities are limited
Exporters	Unpredictable flight schedules	High cost of delayed deliveries
	No defined location of national depot in Dhaka	
Domestic	Low effective demand for crab due to socio- cultural barriers	
Consumers	Low product awareness	
	Only low quality products are available for the domestic market	High perceived buying prices Limited product availability and choices

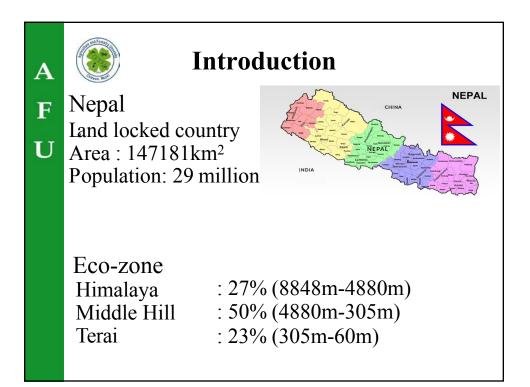
	Recommendat	ions	
Key Players	Concerns	Recommendations	
Crab Collectors/ Farmers	 Irregular availability and sustainability of seeds and feeds Limited working capital Traditional technology 	 Establish hatchery as reliable sources of crab seeds Formulate nutrition program Organize or form cooperative or farmers group Undergo techno transfer activities more regularly 	
		 Women may enter into contract buying scheme. Women may enter into processing soft-shelled/chilled crab sector. 	
Traders/Shippers	Poor marketing infrastructures	Provision of efficient marketing infrastructures an communication facilities	
	High in-transit mortality (20%)	Liberalizing trade policies of the government would allow more competition	
	Poor product handling	Redesign product packaging and handling system	

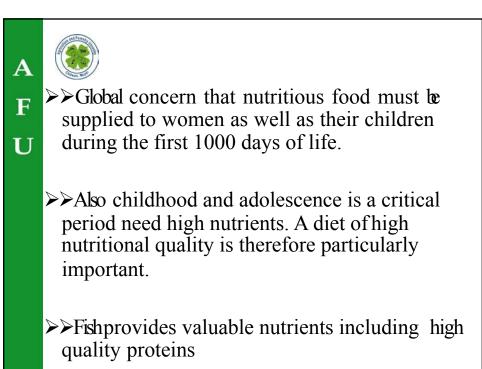
Key Players	Concerns	Recommendations
Exporter- Processors	 Poor product quality Limited domestic market outlets 	 Comply or adhere to quality assurance program such as Halal, HACCP, ISO, etc. Design more suitable packaging strategy Conduct more aggressive marketing program
	Unpredictable flight schedules	 Maintain regular and efficier communication with airlines
	No defined location of national trading center in Dhaka	Establish and allocate area for market operations

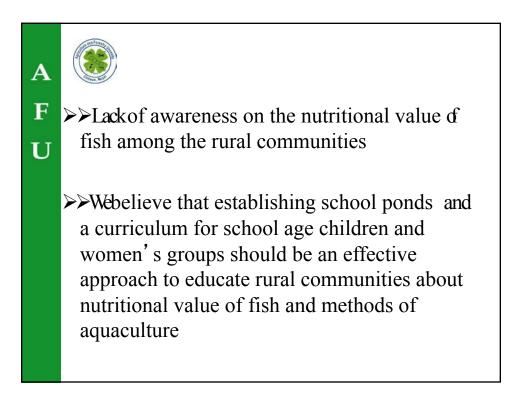
Key Players	Concerns	Recommendations
Consumers	Low effective demand for crab due to socio- cultural barriers	Conduct aggressive marketing and promotional activities
	Only low quality products are available in the domestic market	 Continue establishing niche markets through tourism and other target marketing modes.

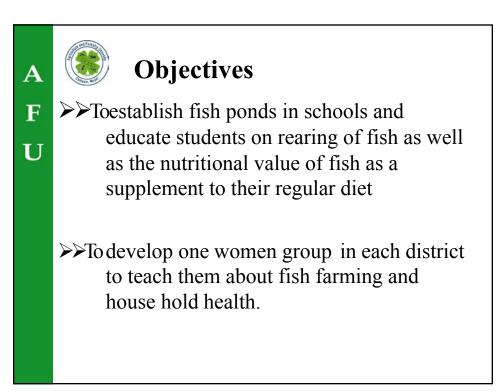
Establishing school ponds for educating students to improve health and nutrition of children and women in rural Nepal

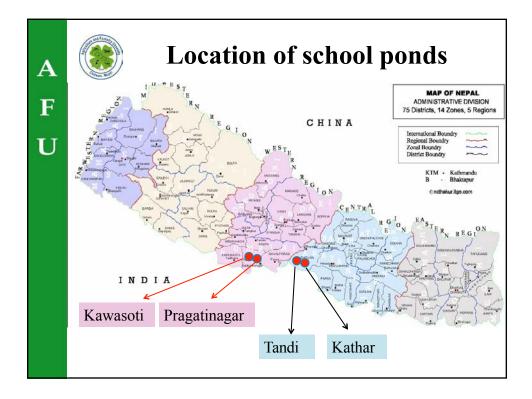

Dilip K. Jha*, Narayan P. Pandit, Ishori S. Mahato, Madhav K. Shrestha, and James S. Diana Department of Aquaculture and Fisheries Agriculture and Forestry University, Rampur, Chitwan, Nepal dkjha.ait@gmail.com

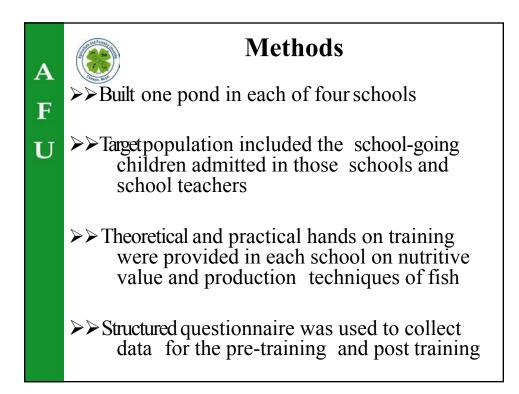

We believe that establishing school ponds and a curriculum for school age children and women's groups should be an effective approach to educate rural communities about the nutritional value of fish and methods of aquaculture. Four ponds of 76-264 m² in size were constructed, one each in four public schools of Chitwan and Nawalparasi districts in Nepal. A school curriculum was also established to demonstrate methods of aquaculture and educate school age children on nutritional value of fish. This technology was also disseminated to women's groups to expand understanding of the value of fish production and consumption for their families.

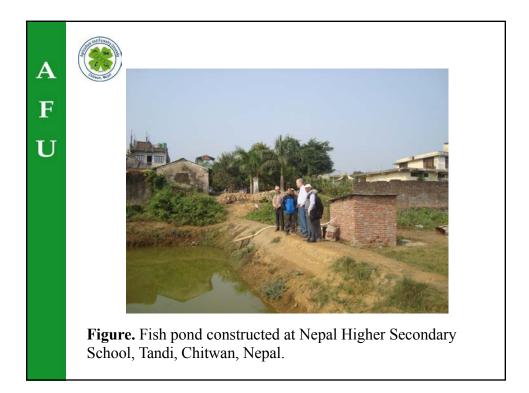

Carps and Nile tilapia seed were provided to each school from nearby government fish hatcheries, and were stocked in each pond at 10,000 fish/ha (7000 carps and 3000 Nile tilapia/ha). The materials necessary to maintain ponds, including feed and fertilizer, were also provided to each school. Fish were cultured for one production cycle with the participation of high-school age students. A course of study was developed for teacher and student education on fish culture. About 30 students of grade 8, 9 and 10 and two teachers were selected from each school to receive training on fish culture. Training of teachers and students included fish pond construction, managing pond depth, pond preparation, species choice, water color, fertilizing, feeding, grow out, harvesting of fish, as well as nutrition education, including fish preparation and eating.

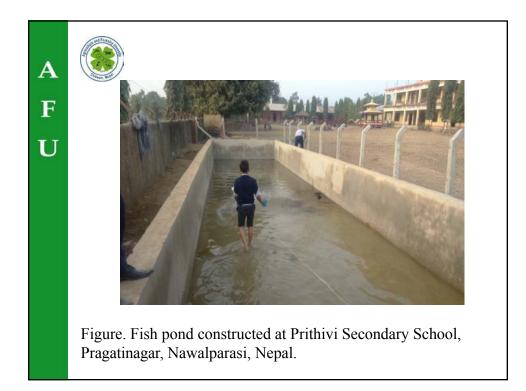

In addition to training of students, informal education activities were also carried out for women groups, which included forming two women's fish farming groups in the school community for each district. A training workshop was organized for each women's group. The topic was the role of household aquaculture in family nutrition and income. A linkage was developed so that the women's fish farming groups could ultimately work with the teachers and students in each school to ensure the long term sustainability of the school ponds.


The construction and running of these ponds was a very exciting event for the school communities. Often a number of adults showed up for events like stocking and harvesting, as well as visits during our training exercises. In fact, the ponds were so popular that in Kawasoti area a neighboring farmer constructed some ponds within a few months of our school pond construction, and the local people wanted advice and materials to construct a community pond on school property. We continue the training and testing of knowledge gained by the students involved, and hope to show a dramatic increase of awareness as a result of this project.









Α		F	Results							
F	Table 1. Name of schools and size of ponds									
TI	SN	School name	Address	Pond size	Pond type					
	1	Nepal Higher Secondary School	Tandi, Chitwan	13 m x 7 m	Earthen pond with plastic lining					
	2	Kathar Secondary School	Kathar, Chitwan	14.5 m x 8 m	Earthen pond with plastic lining					
	3	Prithivi Secondary School	Pragatinagar, Nawalparasi	19 m x 4 m	C e m e n t e d tank					
	4	Janta Higher Secondary School	Kawasoti, Nawalparasi	24 m x 11 m	Earthen pond with plastic lining					

A	Training							
F	Total number of students: 117Female: 63							
÷ -	Male		. 03 : 54					
U	Total number of teachers : 8							
	Table 2. Students and teachers participated in the training							
	School name	Number of students (n)	Male	Female	Teachers			
	Nepal	35	18	17		2		
	Kathar	31	12	19		2		
	Prithivi	28	13	15		2		
	Janta	23	11	12		2		
	Total	117	54	63		8		

Α	Pre- and post-training test							
F U	Table 3.Household pond and fish consumption status of the participating students before and after training							
	School	Number of	-	ish pond (% ponse)	Fish consumption (times/year)			
	name	students (n)	Before training	After training	Before training	After training		
	Nepal	35	5.7	8.6	4.3±4.1	7.7±4.3		
	Kathar	31	12.9	25.8	22.4±30.3	27.1±41.1		
	Prithivi	28	7.1	7.1	2.9±3.1	7.3±4.5		
	Janta	23	17.4	17.4	3.0±3.7	7.7±5.6		
	Total	117	11.1	14.5	9.1±18.8	13.4±24.3		

F

U

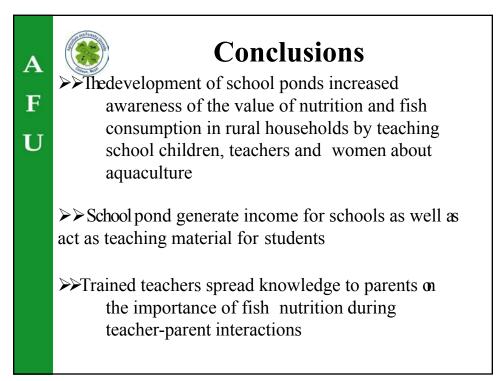

Pre- and post-training test

Table 4.Knowledge of students on fish production and nutritive value of fish at different schools before and after training. Data indicates the mean per cent response of the participant students (n) getting different range of scores

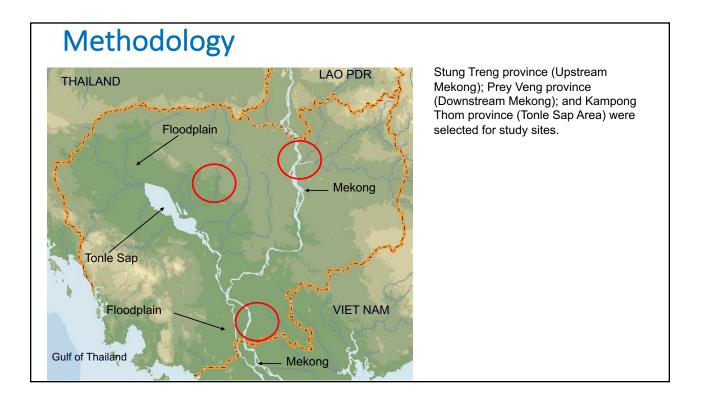
	Score obtained (%)								
School	Before training					After training			
name	<40	40-60	61-80	>80	<40	40-60	61-80	>80	
Nepal	80.0	17.1	2.9	0.0	0.0	23.0	57.0	20	
Kathar	71.0	29.0	0.0	0.0	0.0	0.0	42.0	58.0	
Prithivi	50.0	35.7	14.3	0.0	3.6	17.9	42.9	35.9	
Janta	82.6	8.7	9.7	0.0	0.0	8.7	60.1	30.2	
Total	69.2	26.5	4.3	0.0	1.0	13.7	53.0	32.3	

Fish and nutrient consumption among women and pre-school children in rainy season in Cambodia

Touch Bunthang, So Nam, Chheng Phen, Pos Chhantana, En Net, and Robert Pomeroy ¹ Inland Fisheries Research and Development Institute, Phnom Penh, Cambodia ² Fisheries Faculty, Royal University of Agriculture, Phnom Penh, Cambodia ³ University of Connecticut, Department of Agricultural and Resource Economics, Groton, Connecticut, USA

Fish is an integral part of women and preschool children's staple food for their daily consumption. Fish is main source of protein and other key micronutrients. The prevalence of malnutrition among women and preschool children continues to be a major problem in Cambodia. However, data and information on the commonly consumed fish species and the current fish and dietary intake of women and preschoolers in Cambodia are lacking. The study aimed to identify the commonly consumed fish species and Other Aquatic Animals (OAAs); evaluate food and fish consumption; and dietary energy and nutrient intakes among women and preschool children. Stung Treng province (Upstream Mekong River); Prev Veng province (Downstream Mekong River); and Kampong Thom province (Tonle Sap Area) were selected for study sites. The data collection was conducted in rainy season from 2 to 26 June, 2014. The target of the study subjects were women and preschool children (aged 6 months to 5 years old). Three hundred (300) eligible women and 343 eligible preschool-age children were selected by using simple randomized sampling. The 24 hour-food recall questionnaire was used. Microsoft Excel 2013 and SPSS Statistics Version 20.0 were used for data entry and analysis. Forty three (43) of fish species and OAAs consumed by women and 38 fish species and OAAs consumed by preschoolers. Fish provides more than three-fourths (80%) to the total animal protein intake of women and pre-school children. Women consumed fish at 145.3 g/p/day and preschoolers at 52.9g/p/day. The total average one day per capita food consumption of women was 861g/p/day, while preschoolers was 489g/p/day. The total average dietary energy intake of women was 1976 kcal/p/day, while preschoolers was 844.9kacl/p/day. Fish, OAAs and its products were the major contributor to energy, fats, carbohydrate, iron, zinc, calcium, and vitamin A of women's energy and nutrients contributed at 69.7%, 54%, 99%, 74.5%, 44.6%, 83% and 87.4%, respectively. Fish, OAAs and products was also the major contributor to energy, fats, carbohydrate, iron, zinc, calcium, and vitamin A of pre-school children's energy and nutrients contributed at 72.1%, 60%, 93%, 57.2%, 44.1%, 92.8% and 56.4%, respectively.

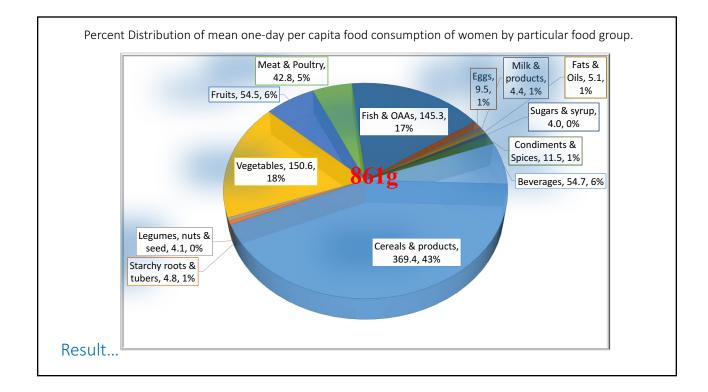
Outline Introduction Objectives Methodology Results Conclusion and Recommendations

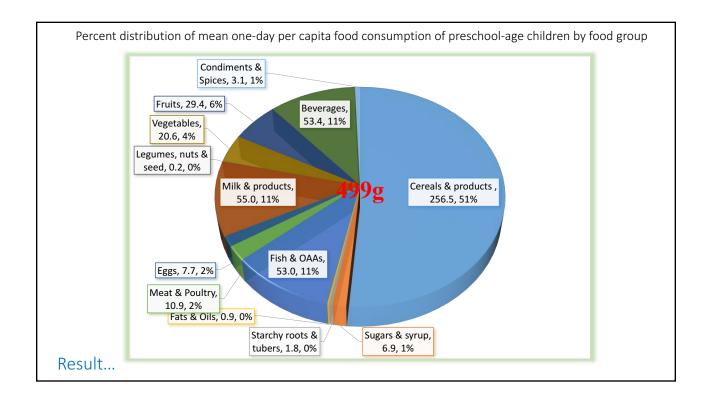

Introduction

- Land Area: 181,035Sq.km
- Population: 15,784,152 millions (2015)
- The prevalence of malnutrition among women and preschool children continues to be a major problem in Cambodia.
- Over 6 million Cambodians = part-time fishing and related fishing activities = 45.5% of the total population
- More than 1.5 million full-time fishers (> 80% is small-scale fishers)
- An estimated Value of fisheries US\$ 1.2 1.6 billion
- Value of inland fisheries = US\$ 0.8 1.0 billion
- This estimated value accounts for about 8.0-12% of Cambodia's GDP.
- Max. yield, i.e. approx. 400,000-450,000 tons/y.

Objectives

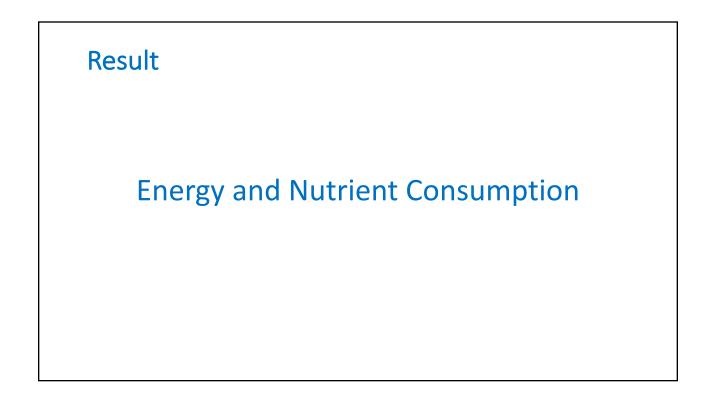
- To find out the commonly consumed fish species and Other Aquatic Animals (OAAs) of women and pre-school children;
- To evaluate food and fish consumption, and dietary energy and nutrient intakes among women and pre-school children; and
- To evaluate the role of fish in Women and Pre-schooler Nutrition comparing to nutrients derived from other animal sources.

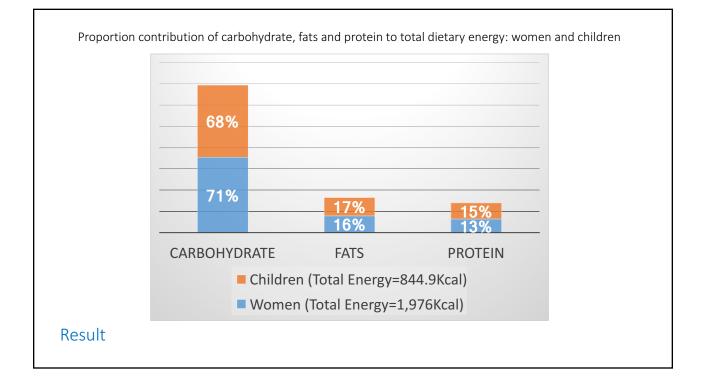

Methodology...


- The data collection was conducted in rainy season from 2 to 26 June, 2014.
- 300 eligible women and 343 eligible preschoolers (6mos to 5 ys) were selected by using simple randomized sampling.
- A single 24-hour food recall was used to estimate the amount of food that has been eaten in the past 24 hours.
- Food models were used to identify food items were eaten by the subjects.

Methodology...

- Electronic Scale (precision to 0.1g) was used.
- The ASEAN Food Composition Table (ASEANFCT, 2000) was used to compute the nutrient content of the foods consumed.
- Included nutrients for evaluation: energy; macronutrients (Protein, Carbohydrate and fats); and key micronutrients (Iron, Zinc, Calcium, and Vitamin A).
- The Recommended Dietary Allowances (RDA)harmonization in Southeast Asia, 2008 (Barba et al., 2008) was used to determine the level of nutritional adequacy of the food intake to estimate the amount of food that has been eaten by women and children

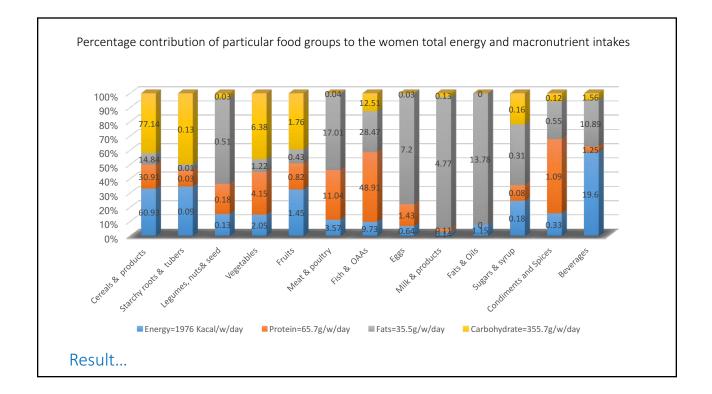


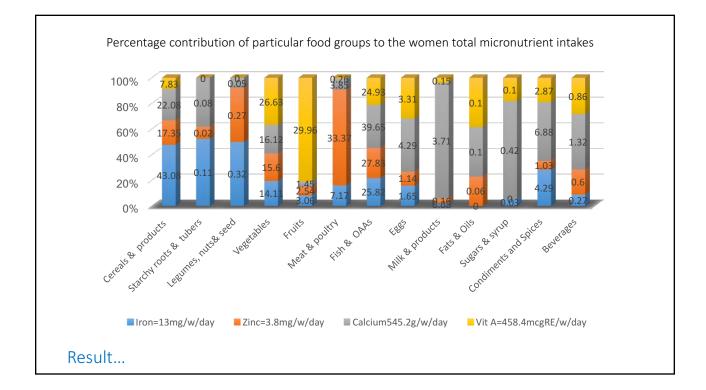

No	. Khmer Name	ame Scientific Name N		%
1	Trye Riel	Cirrhinus sp.	31.05	21.04
2	Trye Ros	Channa striata	19.14	12.97
3	Trye Chhpin	Barbonymuous gonionotus	15.04	10.19
4	Trye Kanhchus	Mystus sp.	12.64	8.56
5	Trey Chhlang	Hemibagrus sp.(cf.nemarus)	9.6	6.5
6	Trey Andeng	Clarias batrachus	9.17	6.21
7	Trey Deab	Channa micropeltes	7.48	5.07
8	Trey Chab	Piaractus brachypomus	5.41	3.66
9	Trey Kranh	Anabas tastudineus	4.38	2.96
10	Trey Pou	Pangasius larnaudii	4.34	2.94
11	Other species		27.05	19.9

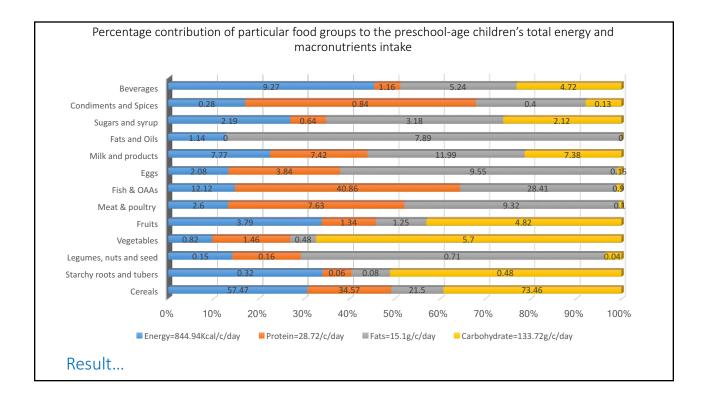
Γ

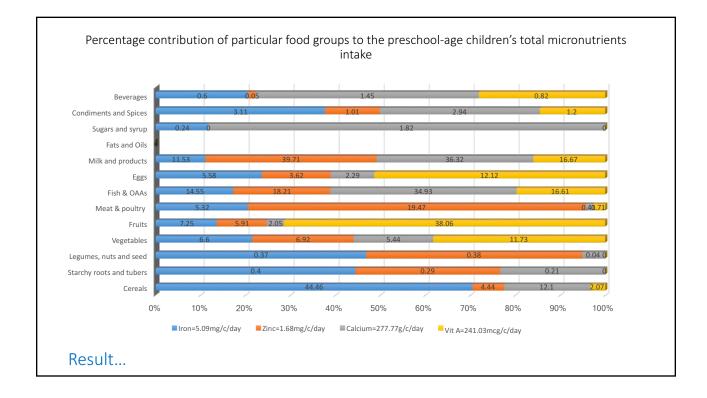
First 10 commonly consumed fish and percent distribution of the preschool-age children's mean one day per capita fish consumption (Preschooler consumes 38 of fish and OAAs)

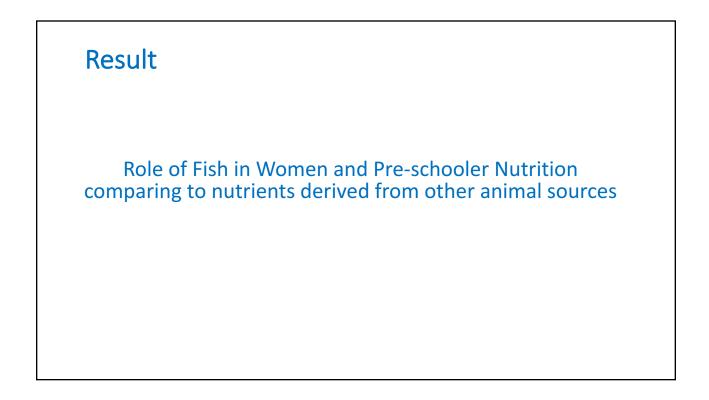
	No.	Khmer Name	Scientific Name	Mean (g)	%
	1	Trey Riel	Cirrhinus sp.	12.9	24.3
	2	Trey Ros	Channa striata	9.6	17.8
	3	Trey Kanhchus	Mystus sp.	5.1	9.6
	4	Trey Chhpin	Barbonymuous gonionotus	4.2	8.0
	5	Trey Andeng	Clarias batrachus	2.8	5.2
	6	Trey Chhlang	Hemibagrus sp.(cf.nemarus)	2.6	4.8
	7	Trey Chab	Piaractus brachypomus	1.4	2.7
	8	Trey Chongva	Rasbora sp.	1.4	2.6
	9	Trey Deab	Channa micropeltes	1.3	2.5
	10	Trey Tuke	Cephalophlis sp.	1.0	2.0
	11	Other Species	Others	10.8	20.5
Result					

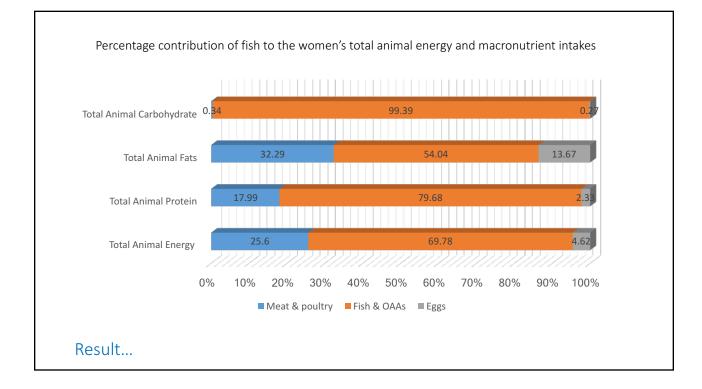


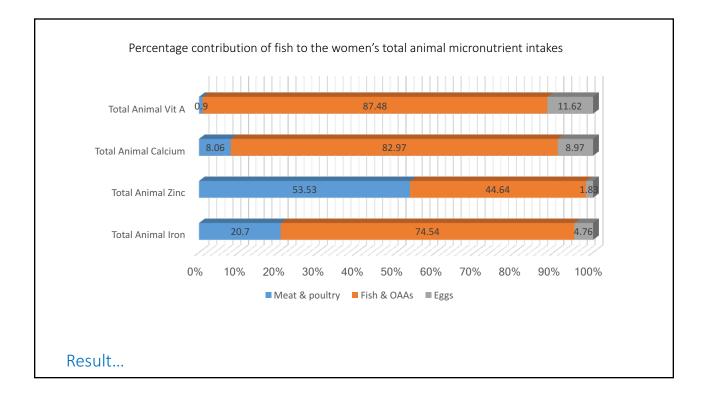


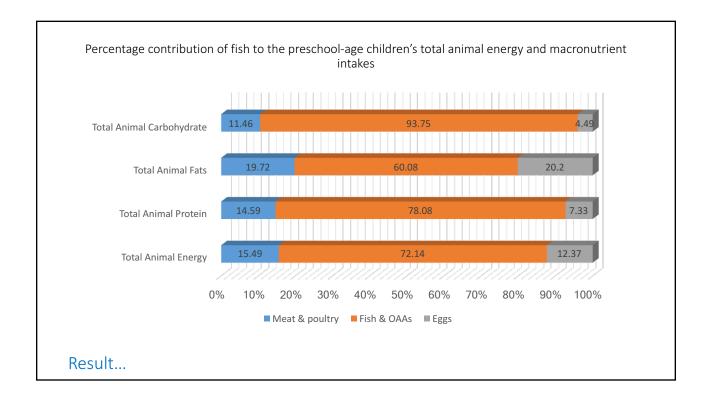

Energy and Nutrient	All Women	Stung Treng	Kampong Thom	Prey Veng
Energy(Kcal)	1976.0	2032.1	1813.3	2082.6
Meeting 100% of Energy Intake (%)	50.0	52.0	42.0	56.0
Protein(g)	65.7	67.4	61.9	67.8
Meeting 80% of Protein Intake (%)	71.0	75.0	66.0	72.0
Iron(mg)	13.0	11.7	13.9	13.2
Meeting 80% of Iron Intake (%)	10.7	13.0	5.0	14.0
Zinc(mg)	3.8	3.1	4.2	4.1
Meeting 80% of Zinc Intake (%)	36.3	28.0	46.0	35.0
Calcium(mg)	545.2	478.4	537.7	619.3
Meeting 80% of Calcium Intake (%)	24	21.0	26.0	24.0
Vitamin A(mcg RE)	458.4	531.4	438.8	404.9
Meeting 80% of Vitim A Intake (%)	28	24.0	29.0	31.0
Carbohydrate(g)	355.7	346.7	349.0	371.4
Fats(g)	35.5	33.5	28.9	44.0

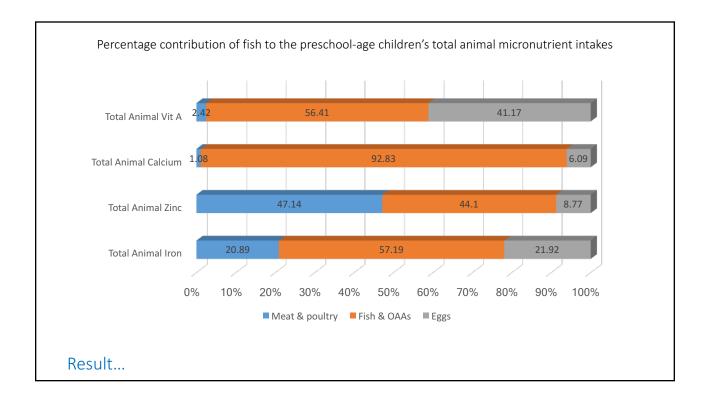

Mean one-day and percent adequacy of energy and nutrient intake of the women


Energy and Nutrient	All Children	Stung Treng	Kampong Thom	Prey Veng
Energy(Kcal)	844.94	775.94	830.54	922.90
Meeting 100% of Energy Intake (%)	29.58	22.22	28.57	37.38
Protein(g)	28.72	26.72	26.36	32.90
Meeting 80% of Protein Intake (%)	53.37	46.66	48.57	61.68
Iron(mg)	5.09	4.83	4.75	5.67
Meeting 80% of Iron Intake (%)	24.11	15.28	22.85	32.71
Zinc(mg)	1.68	1.26	1.60	2.14
Meeting 80% of Zinc Intake (%)	8.03	2.85	5.71	14.95
Calcium(mg)	277.77	207.56	287.95	332.73
Meeting 80% of Calcium Intake (%)	23.79	15.23	18.09	27.10
Vitamin A(mcg RE)	241.03	233.41	268.03	221.59
Meeting 80% of Vitim A Intake (%)	18.64	13.33	22.85	18.69
Carbohydrate(g)	133.72	119.51	127.52	152.95
Fats(g)	15.10	13.08	13.13	18.90









Conclusion

- Rice and fish are the traditional staple foods playing an important role in the diets of women and children in Cambodia.
- Rice is the main source of energy and fish is the main source of animal protein.
- Fish is the major contributor of key micronutrients such as iron, zinc, calcium and vitamin A in women and children.
- Nutritional status of the rural poor women and children was low.
- The low intake of micronutrients in comparison to the recommended daily intake put them in the risk of micronutrient deficiencies.
- Fish is a nutritionally important animal food source contributing to the daily diets of the women and children in poor rural households

Recommendations

The recommendations for adaptation options and strategies to enhance food security and nutrition of women and preschool children in Cambodia are as follows:

- Food-based agricultures (dietary diversification) to promote integrated farming systems at household level with wide diversity of micronutrient-rich vegetables and fruits (commonly dark green vegetables, yellow fruits and vegetables) and food of animal origin (fish, egg, poultry and meat) to extend their season of availability;
- Increase in the accessibility of diverse species of low value small-sized fish species at household level;
- Preparation of recipes using higher proportion of micronutrient-rich foods, i.e. fish;
- Food preparation methods that preserve micronutrients: short cooking times, steaming, adding food to boiling water rather than cold water, and boiling rather than intensive frying;
- Food eating habits and behavior changes (make use of local knowledge and perception on fish, incorporation of fish in the meal, distribution of fish in the family);

Recommendation...

- Eating parts of fish and other aquatic animals such as eyes, head, skin, and meat; and processed fish products that are rich in micronutrients such as iron, zinc calcium, vitamin B complex and Vitamin A with the aim of incorporating these species into cultural practices;
- Avoid or reduce consumption of tea and coffee with meals;
- A nutritional education program in partnership with partners such as the Cambodian Red Cross in consultation with the National Maternal and Child Health Center and the National Nutrition Program on safe water, sanitation and hygiene aspects, cooking methods, food preparation and preservation, food eating habits and behaviors changes, in all Child and Maternal Nutrition programs; and
- A communication strategy can be used to promote dietary behaviors changes that increase consumption of micronutrient-rich fish species and foods of women and children.

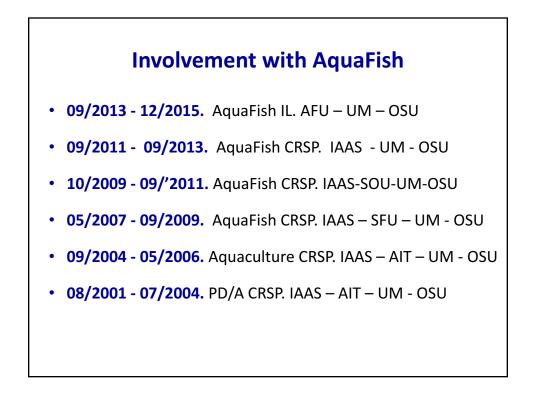
Role of the AquaFish Innovation Lab in university capacity building and aquaculture development in Nepal

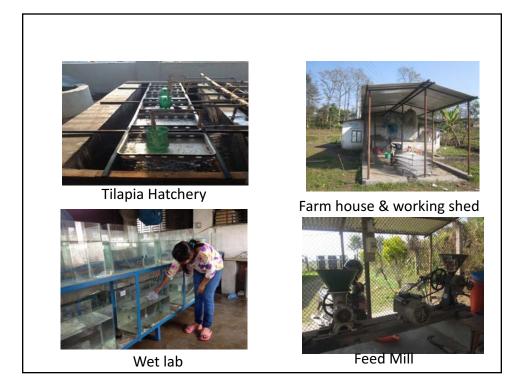
Madhav K. Shrestha and James S. Diana Department of Aquaculture and Fisheries Agriculture and Forestry University, Rampur, Chitwan, Nepal madhavshrestha1954@gmail.com

The AquaFish Innovation Lab (formerly CRSP) has supported developing aquaculture for sustained food security and nutrition in Nepal since 2002 by partnering with Agriculture and Forestry University (AFU), formerly the Institute of Agriculture and Animal Science (IAAS) at Tribhuvan University. The AquaFish program has helped in developing research capacity, research facilities, and ultimately in providing quality education for aquaculture and fisheries students in the university. In addition to research projects, AquaFish has supported 22 master's students for their research and assistantship, and also provided assistantships to 30 undergraduate students. It also supported faculty and students participation in international/national seminars and professional conferences. Aquafish has also assisted in organizing and financially helped sponsor aquaculture and fisheries conferences and national fairs in Nepal and the region.

AquaFish supported research projects in Nepal have mainly focused on development of low-cost aquaculture technology and inclusion of indigenous fish species in aquaculture. Funding has been provided to 4 faculty members, 2 government researchers, and also 3 U.S. students to complete research projects in Nepal. At least six technologies have been developed and tested in on-farm trials, which not only serve to determine adoption of technologies but also extend the concepts to practitioners. These trials include Polyculture of grass carp and Nile tilapia, Integrated cage-cum-pond culture systems of sahar (*Tor putitora*) and African catfish (*Clarias gariepinus*) with carps, Polyculture of sahar with mixed-sex Nile tilapia, Polyculture of sahar and Nile tilapia with carps, Inclusion of small indigenous fishes in carp polyculture ponds and Sahar breeding in the tropical and subtropical climates of Nepal. Overall, AquaFish funding and the opportunities generated for faculty members, students, and government officials have produced substantial gains for aquaculture development in Nepal, and helped the University develop a better infrastructure and training program for the future.

- 11 Departments
- Faculty of Forestry
 - 8 Departments
- Faculty of Animal Science, Veterinary Science and Fisheries
 - 10 Departments
 - Aquaculture and Fisheries (A&F) is one of them





New Construction

Fisheries Reservoir (Open water lab)

Fisheries Academic Building

Student support

M Sc: (IAAS)

- 1. Narayan P. Pandit
- 2. Ravi Lal Sharma
- 3. Kamala Gharti
- 4. Ram Bhajan Mandal
- 5. Ramesh Jaiswal
- 6. Shailesh Gurung
- 7. Rim Thapa
- 8. Prasanta Sapkota
- 9. Saddam Hussain
- 10. Nelson Pokhrel
- 11. Laxmi Karki

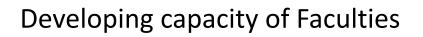
<u>PhD:</u>

1. Ram Bhajan Mandal (AFU)

M Sc (AFU)

- 1. Subhash Kumar Jha
- 2. Rahul Ranjan
- 3. Sabita Jha
- 4. Khop Narayan Shrestha
- 5. Ishori Singh Mahato
- 6. Mahendra Prasad Bhandari
- 7. Rajan Poudel
- 8. Ruchi Shrivasta
- 9. Gun Bahadur Gurung
- 10. Suroj Kumar Singh
- 11. Charitra Narayan Yadav
- 12. Raju Khadka

B Sc Ag


1. Hare Ram Devkota

B Sc Fisheries

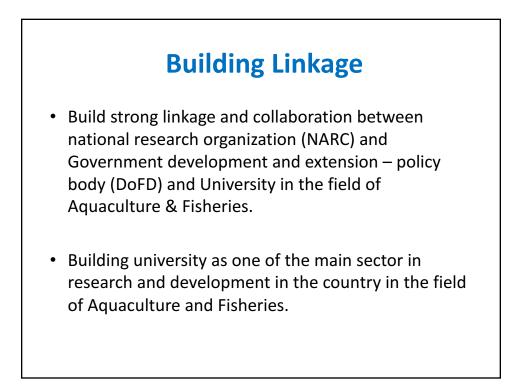
1st batch: 14

2nd batch: 15

3rd batch: 16

- Madhav Shrestha
 - PhD research, Postdoc reseracher
- Sunila Rai
 - PhD
- Dilip Jha
 - PhD by linkage and travel support
- Narayan Pandit
 - M Sc research
 - PhD by linkage
- Kamala Gharti
 - M Sc research

Publications:


 About 25 publication in Journal and proceedings

Conference/Seminar/Workshop:

 More than 50 presentations in national and International conferences since 2002 in Beijing China to Surabaya Indonesia.

Technology generation

- We (AquaFish AFU) is proud to claim the success of Research and promotion of tilapia in Nepal which now priority species to promte for culture
- Cage-pond system: intensive feeding in cage and natural food based in pond tested and demonstrated
- Tilapia-sahar polyculture is a technology developed.
- Carp-SIS technology promotion to small farmers for nutrition and supplemental income.
- Sahar breeding in subtropical (Tarai) in Nepal
- Tilpia-sahar inclusion in carp polyculture system for increased productivity.

Support to NEFIS Convention and Aquaculture Fair

- Supported/sponsor 1st NEFIS convention held in Kathmandu
- Faculty members; PhD and Master students were supported to attend Convention
- 5 presentations made by AquaFish team member/ faculty.

- Faculty travel; PhD and Master students trave were supported to attend 7th National Academy of Science and Technology Conference.
- 2 presentations were made by faculty.

Summing up

- AquaFish has been the instrumental to establish Aquaculture and Fisheries program in Agriculture and Forestry University and the then Institute of Agriculture and Animal Science (IAAS) of Tribhuvan University.
- All the facilities that was built in IAAS are in use in AFU.
- We expect Faculty of Fisheries in near future under the AFU.
- AquaFish will be remembered and acknowledged by A&F program of AFU for its lifetime.
- Thanks to all who contributed to include Nepal, especially university (IAAS /TU; AFU) for research site in the begoning and host country for AquaFish program.

