Title: Comparison of rice straw and bamboo stick substrates in periphyton-based carp polyculture systems

Author(s): Sunila Rai\(^1\), Yang Yi\(^{1,2}\), Md AbdulWahab\(^3\), Amrit N Bart\(^1\) & James S Diana\(^4\)

1. Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
2. College of Aqua-Life Science and Technology, Shanghai Fisheries University, Shanghai, China
3. Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
4. School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI, USA

Date: 24 August 2017
Publication Number: AquaFish Research Report 08-A24

The CRSP authors will not be distributing this publication. Copies may be obtained by writing to the authors.

Abstract: An experiment was conducted to compare rice straw mat and kanchi (bamboo sticks) as substrates in periphyton-based polyculture systems. The experiment had three treatments: (a) no substrate (control), (b) rice straw as a substrate (3 x 2.7 kg pond\(^{-1}\)) and (c) kanchi as a substrate (390 kanchi pond\(^{-1}\)). Fingerlings (n=540) of rohu, *Labeo rohita* (24.5 ± 0.5 g); mrigal, *Cirrhinus mrigala* (25.1 ± 0.6 g); catla, *Catla catla* (25.8 ± 0.5 g); common carp, *Cyprinus carpio* (27.6 ± 0.6 g), and silver carp, *Hypophthalmichthys molitrix* (30.4 ± 0.9 g) were stocked at a 3:2:2:2:1 ratio and cultured for 90 days. There were no differences in the number of plankton, periphyton and macro-zoobenthos among the treatments. The total plate count of bacteria was higher in the rice straw treatment (41320 million – cfu m\(^{-2}\)) than that in the kanchi treatment (11780 million cfu m\(^{-2}\)). Growth and the final mean weight of rohu, catla and common carp were higher in the substrate treatments than those in the control. Rice straw and kanchi treatment, respectively, resulted in 38% and 47% higher combined total weight gain over control. Gross margin analysis showed that rice straw treatment resulted in more profit than the control and kanchi treatment. Therefore, rice straw has the potential to be used to increase production in the low-input rural aquaculture.
This abstract was excerpted from the original paper, which was in the *Aquaculture Research* (2008), 39(5): 464-473.