Title: Effects of *Microcystis aeruginosa* on life history of water flea *Daphnia magna*

Author(s): Liu Liping¹, Li Kang¹, Chen Taoying¹, Dai Xilin¹, Jiang Min¹, James S. Diana²

¹Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Shanghai Ocean University and Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
²School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI, USA

Date: October 19, 2011

Abstract: Cyanobacterial blooms in eutrophic freshwater systems are a worldwide problem, creating adverse effects for many aquatic organisms by producing toxic microcystins and deteriorating water quality. In this study, microcystins (MCs) in *Microcystis aeruginosa*, and *Daphnia magna* exposed to *M. aeruginosa*, were analyzed by HPLC-MS, and the effects of *M. aeruginosa* on *D. magna* were investigated. When *D. magna* was exposed to *M. aeruginosa* for more than 2 h, Microcystin-LR (MC-LR) was detected. When exposed to 1.5×10^6, 3×10^6, 0.75×10^7, and 1.5×10^7 cell/mL of *M. aeruginosa* for 96 h, average survival of *D. magna* for treatments were 23.33%, 33.33%, 13.33%, 16.67%, respectively, which were significantly lower than the average 100% survival in the control group ($P < 0.05$). The adverse effects of *M. aeruginosa* on body length, time for the first brood, brood numbers, gross fecundity, lifespan, and population growth of *D. magna* were density-dependent. These results suggest that the occurrence of *M. aeruginosa* blooms could strongly inhibit the population growth of *D. magna* through depression of survival, individual growth and gross fecundity. In the most serious situations, *M. aeruginosa* blooms could undermine the food web by eliminating filter-feeding zooplankton, which would destroy the ecological balance of aquaculture water bodies.

This abstract was excerpted from the original paper, which was published in the Chinese Journal of Oceanology and Limnology, 29(4):892-897, 2011; DOI: 10.1007/s00343-011-0518-4