Title: The SoLute Carrier (SLC) Family Series in Teleost Fish

Author(s): Tiziano Verri1, Genciana Terova2, Alessandro Romano1, Amilcare Barca1, Paola Pisani1, Carlo Storelli1, and Marco Saroglia3

1. Department of Biological and Environmental Sciences and Technologies, Laboratory of General Physiology, University of Salento.
2. Department of Biotechnology and Life Sciences, University of Insubria. Inter-University Centre for Research in Protein Biotechnologies “The Protein Factory”, Polytechnic University of Milan and University of Insubria.
3. Department of Biotechnology and Molecular Sciences, Animal Biotechnology and Aquaculture Unit, University of Insubria.

Date: 23 August 2017

Publication Number: AquaFish Research Report 12-A07

The CRSP will not be distributing this publication. Copies may be obtained by writing to the authors.

Abstract: Human genes encoding passive transporters, ion-coupled transporters, and exchangers are all included in the so-called SoLute Carrier (SLC) gene series (the Human Genome Organization Gene Nomenclature Committee; http://www.genenames.org/), consisting of 51 families and at least 378 genes (http://www.bioparadigms.org). Ortholog genes encoding for transport proteins of the SLC series have comparatively been described in teleost fish, although their functional properties, in terms of kinetic parameters, substrate specificities, and inhibition patterns of the expressed transport proteins, have only sporadically been assessed in vitro. This chapter gives the latest updates for the SLC families and their members in teleost fish as well as relevant links to GenBank database and literature. By using a functional genomics approach, a list (version 1.0) of all currently known SLC families in teleost fish is provided in the form of SLC tables.

This abstract was excerpted from the original paper, which was published in Marco Saroglia and Zhanjiang (John) Liu (Editors), 2012. Functional Genomics in Aquaculture. John Wiley & Sons, Inc., Oxford, United Kingdom, pp. 219-320.