Title: Analyzing standard curves in the chemistry of waters used for aquaculture

Author(s): Christopher F. Knud-Hansen
Agricultural & Food Engineering Division
Asian Institute of Technology
G.P.O. Box 2754
Bangkok, 10501, Thailand

Date: April 30, 1993

Publication Number: CRSP Research Report 93-51

Price: The CRSP will not be distributing this publication. Copies may be obtained by writing the author.

Abstract: The fundamental principle in colorimetric analyses of water chemistry is the relationship between concentration of a particular chemical and color intensity. Color intensity is determined by measuring the absorbance of light of a particular wavelength. The relationship should follow a standard curve made with a series of standard concentrations selected to cover the expected range of unknown samples. The absorbance of a solution is directly proportional to the concentration of absorbing constituents at a fixed light pathlength, and directly proportional to the pathlength at a fixed concentration. Within a certain range of concentrations, the relationship is linear (y = a + bx, where y = absorbance, a = the y-intercept, x = concentration and b = slope of line). Linear regression can be utilized to determine the slope (b) of the line and the regression coefficient (r), which describes how well the straight line fits the plotted points from standards. Some spectrophotometers measure only transmittance, in which case the logarithm of transmittance should give a linear relationship with concentration. As reliable standard curves are essential, the purpose of this article is to help aquaculture researchers identify, troubleshoot, and hopefully correct common problems associated with colorimetric analysis of water.

This abstract was excerpted from the original paper, which was published in NAGA, the ICLARM Quarterly, January, 1992.